IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i10p1364-1377.html
   My bibliography  Save this article

Vegetation competition model for water and light limitation. II: Spatial dynamics of groundwater and vegetation

Author

Listed:
  • Brolsma, R.J.
  • van Beek, L.P.H.
  • Bierkens, M.F.P.

Abstract

In temperate climates groundwater can have a profound effect on vegetation, because it strongly influences the spatio-temporal distribution of soil moisture in the rootzone and therefore the occurrence of water and oxygen stress of vegetation. This article focuses on vegetation and groundwater dynamics along a hill slope by developing and evaluating a fully coupled hydrological-vegetation model for a temperate forest ecosystem. The vegetation model is described in part 1 of this series of two papers. To simulate the hydrology an extended version of the saturated-unsaturated hydrological model STARWARS has been used. The coupled model is used to investigate both the short and long-term dynamics for a system of two species. Both compete for light and water where one is adapted to wet conditions and the other to dry conditions. The daily dynamics show that the influence of groundwater is particularly strong in spring when waterlogging occurs due to decreased evapotranspiration in winter. Long simulation runs of 1000 years were performed to study the equilibrium state for the two species. Comparison of simulation results with observations of groundwater depth and vegetation types along a dry-wet gradient in a natural forest shows that a reductionist approach is able to capture these patterns well. Sensitivity analysis shows that the border between wet- and dry-adapted species moves upslope with increased rainfall, decreased slope angle and decreased aquifer thickness. These results are similar to previous findings which were based on global maximization of ecosystem evaporation or minimizing ecosystem stress. Comparison of runs with a fixed and a dynamic groundwater table shows that a dynamic groundwater table facilitates a wider transition zone between vegetation types along the hill slope. In this transition the biomass of vegetation is higher in the case of a dynamic groundwater than in case of a static groundwater table. This underlines the importance of incorporating spatial groundwater dynamics in models of groundwater influenced ecosystems.

Suggested Citation

  • Brolsma, R.J. & van Beek, L.P.H. & Bierkens, M.F.P., 2010. "Vegetation competition model for water and light limitation. II: Spatial dynamics of groundwater and vegetation," Ecological Modelling, Elsevier, vol. 221(10), pages 1364-1377.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:10:p:1364-1377
    DOI: 10.1016/j.ecolmodel.2010.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010000840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brolsma, R.J. & Karssenberg, D. & Bierkens, M.F.P., 2010. "Vegetation competition model for water and light limitation. I: Model description, one-dimensional competition and the influence of groundwater," Ecological Modelling, Elsevier, vol. 221(10), pages 1348-1363.
    2. You, Xiaoguang & Liu, Jingling & Zhang, Lulu, 2015. "Ecological modeling of riparian vegetation under disturbances: A review," Ecological Modelling, Elsevier, vol. 318(C), pages 293-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:10:p:1364-1377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.