IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i5p630-639.html
   My bibliography  Save this article

Nutrient criteria for lakes, ponds, and reservoirs: A Bayesian TREED model approach

Author

Listed:
  • Freeman, Angelina M.
  • Lamon, E. Conrad
  • Stow, Craig A.

Abstract

We develop regional-scale eutrophication models for lakes, ponds, and reservoirs to investigate the link between nutrients and chlorophyll-a. The Bayesian TREED (BTREED) model approach allows association of multiple environmental stressors with biological responses, and quantification of uncertainty sources in the empirical water quality model. Nutrient data for lakes, ponds, and reservoirs across the United States were obtained from the Environmental Protection Agency (EPA) National Nutrient Criteria Database. The nutrient data consist of measurements for both stressor variables (such as total nitrogen and total phosphorus), and response variables (such as chlorophyll-a), used in the BTREED model. Markov chain Monte Carlo (McMC) posterior exploration guides a stochastic search through a rich suite of candidate trees toward models that better fit the data. The Bayes factor provides a goodness of fit criterion for comparison of resultant models. We randomly split the data into training and test sets; the training data were used in model estimation, and the test data were used to evaluate out-of-sample predictive performance of the model. An average relative efficiency of 1.02 between the training and test data for the four highest log-likelihood models suggests good out-of-sample predictive performance. Reduced model uncertainty relative to over-parameterized alternative models makes the BTREED models useful for nutrient criteria development, providing the link between nutrient stressors and meaningful eutrophication response.

Suggested Citation

  • Freeman, Angelina M. & Lamon, E. Conrad & Stow, Craig A., 2009. "Nutrient criteria for lakes, ponds, and reservoirs: A Bayesian TREED model approach," Ecological Modelling, Elsevier, vol. 220(5), pages 630-639.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:5:p:630-639
    DOI: 10.1016/j.ecolmodel.2008.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008005887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:5:p:630-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.