IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v216y2008i2p217-228.html
   My bibliography  Save this article

Convexity in projection matrices: Projection to a calibration problem

Author

Listed:
  • Logofet, Dmitrii O.

Abstract

Convexity, as a fundamental property of sets and functions defined on convex sets, plays an important role in many mathematical and applied disciplines, including extremal and optimal-control problems. We prove the set of all feasible projection matrices in a general class of matrix models for stage-structured population dynamics to be convex and the dominant eigenvalue (λ1) of any projection 2×2 matrix to be either a convex, or a concave function on a simplex of the matrix first-row entries (i.e., stage-specific reproduction rates). The latter is also conjectured for the general n×n case. Though looking far from practical needs of matrix population models, this mathematical result has appeared to be quite useful in solving a practical problem to calibrate the projection matrix, i.e., to estimate all the stage-specific vital rates, from empirical data. The data from monitoring of individual life histories of marked plants on permanent sample plots during successive years enable direct calculation of the stage-specific survival and ontogenetic transition rates, but the rates of reproduction do remain uncertain as far as the parent plants can hardly be determined for the (not yet marked!) recruitment.

Suggested Citation

  • Logofet, Dmitrii O., 2008. "Convexity in projection matrices: Projection to a calibration problem," Ecological Modelling, Elsevier, vol. 216(2), pages 217-228.
  • Handle: RePEc:eee:ecomod:v:216:y:2008:i:2:p:217-228
    DOI: 10.1016/j.ecolmodel.2008.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008001439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Logofet, Dmitrii O., 2016. "Estimating the fitness of a local discrete-structured population: From uncertainty to an exact number," Ecological Modelling, Elsevier, vol. 329(C), pages 112-120.
    2. Frisman, E.Y. & Neverova, G.P. & Revutskaya, O.L., 2011. "Complex dynamics of the population with a simple age structure," Ecological Modelling, Elsevier, vol. 222(12), pages 1943-1950.
    3. Logofet, Dmitrii O., 2019. "Does averaging overestimate or underestimate population growth? It depends," Ecological Modelling, Elsevier, vol. 411(C).
    4. Dmitrii O. Logofet & Leonid L. Golubyatnikov & Elena S. Kazantseva & Nina G. Ulanova, 2021. "“Realistic Choice of Annual Matrices Contracts the Range of λ S Estimates” under Reproductive Uncertainty Too," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    5. Logofet, Dmitrii O., 2017. "Aggregation may or may not eliminate reproductive uncertainty," Ecological Modelling, Elsevier, vol. 363(C), pages 187-191.
    6. Logofet, Dmitrii O., 2013. "Projection matrices in variable environments: λ1 in theory and practice," Ecological Modelling, Elsevier, vol. 251(C), pages 307-311.
    7. Dmitrii O. Logofet & Valerii N. Razzhevaikin, 2021. "Potential-Growth Indicators Revisited: Higher Generality and Wider Merit of Indication," Mathematics, MDPI, vol. 9(14), pages 1-15, July.
    8. Logofet, Dmitrii O., 2013. "Calamagrostis model revisited: Matrix calibration as a constraint maximization problem," Ecological Modelling, Elsevier, vol. 254(C), pages 71-79.
    9. Picard, Nicolas & Ouédraogo, Dakis & Bar-Hen, Avner, 2010. "Choosing classes for size projection matrix models," Ecological Modelling, Elsevier, vol. 221(19), pages 2270-2279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:216:y:2008:i:2:p:217-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.