IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v216y2008i2p102-106.html
   My bibliography  Save this article

Forest growth in the light of the thermodynamic theory of ecological systems

Author

Listed:
  • Alexandrov, Georgii A.

Abstract

The observed growth of a particular forest stand can be described by many models and explained by some of them. The forest growth models are also successfully applied for extrapolating the growth curve. However, the known models of forest growth are not “one-point” models. They are not designed to predict the future growth of a forest stand from its current state: the model parameters either are not directly measurable or cannot be measured with relevant accuracy. This article is an attempt to use Jørgensen–Svirezhev theory as a new clue to the choice of variables that determines forest growth. The postulates of this theory combined with the pipe theory of tree growth lead to conclusion that biomass of a stand should be proportional to the four-fifths power of its age. Empirical validation, however, disclosed that calendar age is rather approximate measure of ecosystem ontogeny. Delayed development or intensive thinning of a forest stand at the early stages leads to rejuvenation bias. Thus derived 4/5-law model approximates well-known Chapman–Richards model in the neighborhood of the inflection point, and is applicable to middle-aged forest stands.

Suggested Citation

  • Alexandrov, Georgii A., 2008. "Forest growth in the light of the thermodynamic theory of ecological systems," Ecological Modelling, Elsevier, vol. 216(2), pages 102-106.
  • Handle: RePEc:eee:ecomod:v:216:y:2008:i:2:p:102-106
    DOI: 10.1016/j.ecolmodel.2007.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008001282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parsons, Russell A. & Mell, William E. & McCauley, Peter, 2011. "Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior," Ecological Modelling, Elsevier, vol. 222(3), pages 679-691.
    2. Lin, Hua & Cao, Min, 2008. "Plant energy storage strategy and caloric value," Ecological Modelling, Elsevier, vol. 217(1), pages 132-138.
    3. Alexandrov, G.A & Golitsyn, G.S., 2015. "Biological age from the viewpoint of the thermodynamic theory of ecological systems," Ecological Modelling, Elsevier, vol. 313(C), pages 103-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:216:y:2008:i:2:p:102-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.