IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v214y2008i2p141-152.html
   My bibliography  Save this article

A comparative analysis of parallel processing and super-individual methods for improving the computational performance of a large individual-based model

Author

Listed:
  • Parry, Hazel R.
  • Evans, Andrew J.

Abstract

Individual-based modelling approaches are being used to simulate larger complex spatial systems in ecology and in other fields of research. Several novel model development issues now face researchers: in particular how to simulate large numbers of individuals with high levels of complexity, given finite computing resources. A case study of a spatially-explicit simulation of aphid population dynamics was used to assess two strategies for coping with a large number of individuals: the use of ‘super-individuals’ and parallel computing. Parallelisation of the model maintained the model structure and thus the simulation results were comparable to the original model. However, the super-individual implementation of the model caused significant changes to the model dynamics, both spatially and temporally. When super-individuals represented more than around 10 individuals it became evident that aggregate statistics generated from a super-individual model can hide more detailed deviations from an individual-level model. Improvements in memory use and model speed were perceived with both approaches. For the parallel approach, significant speed-up was only achieved when more than five processors were used and memory availability was only increased once five or more processors were used. The super-individual approach has potential to improve model speed and memory use dramatically, however this paper cautions the use of this approach for a density-dependent spatially-explicit model, unless individual variability is better taken into account.

Suggested Citation

  • Parry, Hazel R. & Evans, Andrew J., 2008. "A comparative analysis of parallel processing and super-individual methods for improving the computational performance of a large individual-based model," Ecological Modelling, Elsevier, vol. 214(2), pages 141-152.
  • Handle: RePEc:eee:ecomod:v:214:y:2008:i:2:p:141-152
    DOI: 10.1016/j.ecolmodel.2008.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008000574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wallentin, Gudrun & Neuwirth, Christian, 2017. "Dynamic hybrid modelling: Switching between AB and SD designs of a predator-prey model," Ecological Modelling, Elsevier, vol. 345(C), pages 165-175.
    2. Hofmann Elizondo, Urs & Vogt, Meike, 2022. "Individual-based modeling of shelled pteropods," Ecological Modelling, Elsevier, vol. 468(C).
    3. Castellani, Marco & Våge, Selina & Strand, Espen & Thingstad, T. Frede & Giske, Jarl, 2013. "The Scaled Subspaces Method: A new trait-based approach to model communities of populations with largely inhomogeneous density," Ecological Modelling, Elsevier, vol. 251(C), pages 173-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:214:y:2008:i:2:p:141-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.