IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v211y2008i3p363-374.html
   My bibliography  Save this article

Development and validation of a spatial snow-glide model

Author

Listed:
  • Leitinger, Georg
  • Höller, Peter
  • Tasser, Erich
  • Walde, Janette
  • Tappeiner, Ulrike

Abstract

Snow gliding is a key component leading to natural hazards, i.e. avalanches and erosions, and due to ongoing global changes has become a topic of major concern. Spatial information on snow gliding is important for management purposes, but, to date, lack of knowledge about key drivers for the snow-glide process hindered the development of a spatial snow-glide model (SSGM). We report the most important drivers for snow gliding derived from analyzing snow-glide distances taken over five winter periods in two climatically different study areas by ordinary least-squares regression. Six variables (forest stand, slope angle, winter precipitation, surface roughness, slope aspect west, slope aspect east) were revealed as key drivers and enabled us for the first time to establish a SSGM. Both model development (R2=0.838) and model validation (R2=0.823) exhibit outstanding accuracy of prediction. Hence, the SSGM was used to model snow-glide maps for both study areas: the ‘Kaserstattalm’ (Stubai Valley, North Tyrol, Austria) and the drier and warmer area of the ‘Waltner Mähder’ (Passeier Valley, South Tyrol, Italy). The reliability of these maps was validated by intersection with mapped erosions attributed to snow gliding. Therewith, such potential snow-glide maps have management relevance and are useful and necessary for risk assessment as well as to raise awareness about snow gliding to the land owners and regional managers.

Suggested Citation

  • Leitinger, Georg & Höller, Peter & Tasser, Erich & Walde, Janette & Tappeiner, Ulrike, 2008. "Development and validation of a spatial snow-glide model," Ecological Modelling, Elsevier, vol. 211(3), pages 363-374.
  • Handle: RePEc:eee:ecomod:v:211:y:2008:i:3:p:363-374
    DOI: 10.1016/j.ecolmodel.2007.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007004796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuangang Gong & Dazhi Ni & Yuna Liu & Yalei Li & Qingmei Huang & Yu Tian & Hao Zhang, 2024. "Herbaceous Vegetation in Slope Stabilization: A Comparative Review of Mechanisms, Advantages, and Practical Applications," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    2. P. Höller, 2014. "Snow gliding and glide avalanches: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1259-1288, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:211:y:2008:i:3:p:363-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.