IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v210y2008i3p253-262.html
   My bibliography  Save this article

Predation affects the susceptibility of hard clam Meretrix lusoria to Hg-stressed birnavirus

Author

Listed:
  • Liao, Chung-Min
  • Yeh, Ching-Hung
  • Chen, Szu-Chieh

Abstract

Predator–prey interaction in aquatic ecosystem is one of the simplest drivers affecting the species population dynamics. Predation controls are recognized as important aspects of ecosystem husbandry and management. In this paper we investigated how predation control cause an increase in host growth in the abundance of hard clam (Meretrix lusoria) populations subject to mercury (Hg)-stressed birnavirus. Here we linked predator–prey relationships with a bioenergetic matrix population model (MPM) associated with a susceptible–infectious–mortality (SIM) model based on a host–pathogen–predator framework to quantify the predator effects on population dynamics of disease in hard clam populations. Our results indicated that relative high predation rates could promote the hard clam abundances in relation to predators that selectively captured the infected hard clam, by which the disease transmission was suppressed. The results also demonstrated that predator-induced modifications in host behavior could have potential negative or positive effects on host growth depending on relative species density and resource dynamics. The most immediate implication of this study for the management of aquatic ecosystem is that, beyond the potential for causing a growth in abundance, predation might provoke greater predictability in aquatic ecosystem species populations and thereby increase the safety of ecosystem production from stochastic environmental events.

Suggested Citation

  • Liao, Chung-Min & Yeh, Ching-Hung & Chen, Szu-Chieh, 2008. "Predation affects the susceptibility of hard clam Meretrix lusoria to Hg-stressed birnavirus," Ecological Modelling, Elsevier, vol. 210(3), pages 253-262.
  • Handle: RePEc:eee:ecomod:v:210:y:2008:i:3:p:253-262
    DOI: 10.1016/j.ecolmodel.2007.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000700405X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bidegain, G. & Powell, E.N. & Klinck, J.M. & Ben-Horin, T. & Hofmann, E.E., 2016. "Microparasitic disease dynamics in benthic suspension feeders: Infective dose, non-focal hosts, and particle diffusion," Ecological Modelling, Elsevier, vol. 328(C), pages 44-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:210:y:2008:i:3:p:253-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.