IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v201y2007i3p429-439.html
   My bibliography  Save this article

Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions

Author

Listed:
  • Wang, Hongqing
  • Hsieh, Y. Ping
  • Harwell, Mark A.
  • Huang, Wenrui

Abstract

Soil salinity plays a very important role in determining the distribution of vegetation, plant productivity, and biogeochemical processes in coastal marsh ecosystems. Salinity gradients and salinity–vegetation associations in salt marshes have often been observed but rarely explained. A quantitative and systematic study on the soil salinity distribution in salt marshes is not only important to the understanding of coastal marsh ecosystems but also to the development of a potentially useful ecological and environmental indicator. In this research, we developed a salt marsh soil salinity model based on an existing salt and water balance model with modifications to several key features to examine the impacts of tidal forcing, climate, soil, vegetation, and topography on soil salinity distributions of the Atlantic and Gulf coastal marshes. This model was calibrated and validated using field observations from the St. Marks National Wildlife Refuge (NWR) of northwestern Florida, USA. The results showed that the model had good agreement (r2=0.84, n=15, P<0.001) with field observations. We found that the mean higher high water (MHHW) level determines the location of the salinity maximum in a coastal salt marsh. Simulations indicate that tidal irregularity primarily controls the width of the salinity maximum band. Evapotranspiration, temperature, hydraulic conductivity, and incoming tidal salinity significantly affect the salinity maximum band, which may lead to the formation of salt barrens/flats when reaching a threshold level.

Suggested Citation

  • Wang, Hongqing & Hsieh, Y. Ping & Harwell, Mark A. & Huang, Wenrui, 2007. "Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions," Ecological Modelling, Elsevier, vol. 201(3), pages 429-439.
  • Handle: RePEc:eee:ecomod:v:201:y:2007:i:3:p:429-439
    DOI: 10.1016/j.ecolmodel.2006.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380006004959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2006.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tappi, Marco & Carucci, Federica & Gatta, Giuseppe & Giuliani, Marcella Michela & Lamonaca, Emilia & Santeramo, Fabio Gaetano, 2023. "Temporal and design approaches and yield-weather relationships," MPRA Paper 117488, University Library of Munich, Germany.
    2. Zhao, Xiaochen & Rivera-Monroy, Victor H. & Wang, Hongqing & Xue, Z George & Tsai, Cheng-Feng & Willson, Clinton S. & Castañeda-Moya, Edward & Twilley, Robert R., 2020. "Modeling soil porewater salinity in mangrove forests (Everglades, Florida, USA) impacted by hydrological restoration and a warming climate," Ecological Modelling, Elsevier, vol. 436(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:201:y:2007:i:3:p:429-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.