IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v200y2007i1p217-224.html
   My bibliography  Save this article

Modification of a stream temperature model with Beer's law and application to GaoShan Creek in Taiwan

Author

Listed:
  • Tung, Ching-Pin
  • Yang, Yi-Chen E.
  • Lee, Tsung-Yu
  • Li, Ming-Hsu

Abstract

A physics-based stream temperature model [Tung, C.P., Lee, T.Y., Yang, Y.C., 2006. Modelling climate-change impacts on stream temperature of Formosan Landlocked Salmon habitat. Hydrol. Process. 20, 1629–1649] was improved by incorporating shading effects caused by both cliff terrain and riverbank dense vegetation to simulate hourly stream temperature variations in 1 day. Daily maximal stream temperature is a critical factor to the habit distribution of the Formosan Landlocked Salmon, an important and endangered species. Currently, it only can be found in ChiChiaWan Creek and GaoShan Creek in Taiwan. The former stream temperature model only considers the shading effects of cliff terrain and works well for ChiChiaWan Creek, but overestimates stream temperatures of GaoShan Creek having dense riverbank vegetative covers. The model was modified with the Beer's law and a parameterization scheme to describe the diminishing of the incident solar radiation to take vegetative shading effects into account. Simulation results of GaoShan Creek show the success of this improvement. The shading effects induced by both terrain and vegetation can significantly affect stream temperature distributions. Simulation experiments were conducted to indicate shading effects are varied in different watersheds and seasons.

Suggested Citation

  • Tung, Ching-Pin & Yang, Yi-Chen E. & Lee, Tsung-Yu & Li, Ming-Hsu, 2007. "Modification of a stream temperature model with Beer's law and application to GaoShan Creek in Taiwan," Ecological Modelling, Elsevier, vol. 200(1), pages 217-224.
  • Handle: RePEc:eee:ecomod:v:200:y:2007:i:1:p:217-224
    DOI: 10.1016/j.ecolmodel.2006.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380006003644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2006.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gutiérrez-Trashorras, Antonio J. & Villicaña-Ortiz, Eunice & Álvarez-Álvarez, Eduardo & González-Caballín, Juan M. & Xiberta-Bernat, Jorge & Suarez-López, María J., 2018. "Attenuation processes of solar radiation. Application to the quantification of direct and diffuse solar irradiances on horizontal surfaces in Mexico by means of an overall atmospheric transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 93-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:200:y:2007:i:1:p:217-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.