IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v233y2023ics0165176523004706.html
   My bibliography  Save this article

Improving factor momentum: Statistical significance matters

Author

Listed:
  • Liu, Yangyi
  • Luo, Ronghua
  • Zhao, Senyang

Abstract

Factor selection in the crowded “factor zoo” presents a significant challenge. This study introduces the statistical factor momentum (SFMOM), a novel approach employing pairwise t-test procedures to adeptly balance Type I and Type II errors, thereby enhancing factor momentum. Through empirical analysis of 207 factors, we demonstrate SFMOM’s superior performance, particularly in long-short portfolios. SFMOM prefers low-volatility factors and its effectiveness is most pronounced during periods of substantial dispersion in factors’ risk-adjusted performance. Our study offers a new perspective on factor selection and a practical tool for portfolio managers, and the methodology can be applied to other markets.

Suggested Citation

  • Liu, Yangyi & Luo, Ronghua & Zhao, Senyang, 2023. "Improving factor momentum: Statistical significance matters," Economics Letters, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:ecolet:v:233:y:2023:i:c:s0165176523004706
    DOI: 10.1016/j.econlet.2023.111444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176523004706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2023.111444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Journal of Finance, American Finance Association, vol. 75(5), pages 2503-2553, October.
    2. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    3. Fan, Minyou & Kearney, Fearghal & Li, Youwei & Liu, Jiadong, 2022. "Momentum and the Cross-section of Stock Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    4. Sina Ehsani & Juhani T. Linnainmaa, 2022. "Factor Momentum and the Momentum Factor," Journal of Finance, American Finance Association, vol. 77(3), pages 1877-1919, June.
    5. Andrew Y. Chen & Tom Zimmermann, 2022. "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
    6. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Papers 2006.04269, arXiv.org.
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. Minyou Fan & Youwei Li & Ming Liao & Jiadong Liu, 2022. "A reexamination of factor momentum: How strong is it?," The Financial Review, Eastern Finance Association, vol. 57(3), pages 585-615, August.
    9. Amit Goyal & Narasimhan Jegadeesh, 2018. "Cross-Sectional and Time-Series Tests of Return Predictability: What Is the Difference?," The Review of Financial Studies, Society for Financial Studies, vol. 31(5), pages 1784-1824.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Junyong, 2024. "Zoom in on momentum," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    3. Tobias Wiest, 2023. "Momentum: what do we know 30 years after Jegadeesh and Titman’s seminal paper?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 95-114, March.
    4. Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
    5. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    6. Harvey, Campbell R. & Liu, Yan, 2021. "Lucky factors," Journal of Financial Economics, Elsevier, vol. 141(2), pages 413-435.
    7. Minyou Fan & Youwei Li & Ming Liao & Jiadong Liu, 2022. "A reexamination of factor momentum: How strong is it?," The Financial Review, Eastern Finance Association, vol. 57(3), pages 585-615, August.
    8. Andrew Y. Chen, 2021. "The Limits of p‐Hacking: Some Thought Experiments," Journal of Finance, American Finance Association, vol. 76(5), pages 2447-2480, October.
    9. Guillaume Coqueret, 2023. "Forking paths in financial economics," Papers 2401.08606, arXiv.org.
    10. Huang, Haitao & Jiang, Lei & Leng, Xuan & Peng, Liang, 2023. "Bootstrap analysis of mutual fund performance," Journal of Econometrics, Elsevier, vol. 235(1), pages 239-255.
    11. Zhang, Yu & Kappou, Konstantina & Urquhart, Andrew, 2024. "Macroeconomic momentum and cross-sectional equity market indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    12. Mercik, Aleksander & Słoński, Tomasz & Karaś, Marta, 2024. "Understanding crypto-asset exposure: An investigation of its impact on performance and stock sensitivity among listed companies," International Review of Financial Analysis, Elsevier, vol. 92(C).
    13. Konan Chan & Mei‐Xuan Li & Chu‐Bin Lin & Yanzhi Wang, 2022. "Organization capital effect in stock returns—The role of R&D," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 49(7-8), pages 1237-1263, July.
    14. Zaremba, Adam & Cakici, Nusret & Bianchi, Robert J. & Long, Huaigang, 2023. "Interest rate changes and the cross-section of global equity returns," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    15. Brian H. Boyer & Taylor D. Nadauld & Keith P. Vorkink & Michael S. Weisbach, 2023. "Discount‐Rate Risk in Private Equity: Evidence from Secondary Market Transactions," Journal of Finance, American Finance Association, vol. 78(2), pages 835-885, April.
    16. Cortez, Maria Céu & Andrade, Nuno & Silva, Florinda, 2022. "The environmental and financial performance of green energy investments: European evidence," Ecological Economics, Elsevier, vol. 197(C).
    17. Souza, Thiago de Oliveira, 2020. "Dollar carry timing," Discussion Papers on Economics 10/2020, University of Southern Denmark, Department of Economics.
    18. Mamdouh Medhat & Maik Schmeling, 2022. "Short-term Momentum," The Review of Financial Studies, Society for Financial Studies, vol. 35(3), pages 1480-1526.
    19. Zhang, Han & Guo, Bin & Liu, Lanbiao, 2022. "The time-varying bond risk premia in China," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 51-76.
    20. Carlo A. Favero & Alessandro Melone, 2019. "Asset Pricing vs Asset Expected Returning in Factor Models," Working Papers 651, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Keywords

    Statistical factor momentum; Pairwise t-test; Volatility; False discoveries;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:233:y:2023:i:c:s0165176523004706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.