IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v233y2023ics0165176523003877.html
   My bibliography  Save this article

Beyond rocket science: A factor model for convertible bond returns

Author

Listed:
  • Li, Zhiyong
  • Wang, Haixu
  • Yu, Mei

Abstract

Due to the lack of high-quality data and pricing complexity, convertible bonds are difficult to be captured by the factor model widely used in empirical asset pricing. We consider a zoo of convertible bond predictors in the Chinese markets and use instrumented principal components analysis (IPCA) to capture the cross-sectional returns of convertible bonds. Compared with the observable factor models in corporate bond and equity markets, the latent factor model can better describe the common variation in realized returns, and exhibit smaller pricing errors both in-sample and out-of-sample.

Suggested Citation

  • Li, Zhiyong & Wang, Haixu & Yu, Mei, 2023. "Beyond rocket science: A factor model for convertible bond returns," Economics Letters, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:ecolet:v:233:y:2023:i:c:s0165176523003877
    DOI: 10.1016/j.econlet.2023.111362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176523003877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2023.111362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Chordia, Tarun & Subrahmanyam, Avanidhar & Anshuman, V. Ravi, 2001. "Trading activity and expected stock returns," Journal of Financial Economics, Elsevier, vol. 59(1), pages 3-32, January.
    3. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    4. Chung, Kee H. & Wang, Junbo & Wu, Chunchi, 2019. "Volatility and the cross-section of corporate bond returns," Journal of Financial Economics, Elsevier, vol. 133(2), pages 397-417.
    5. Kewei Hou & Tobias J. Moskowitz, 2005. "Market Frictions, Price Delay, and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 981-1020.
    6. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    7. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    8. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    9. John Y. Campbell & Glen B. Taksler, 2003. "Equity Volatility and Corporate Bond Yields," Journal of Finance, American Finance Association, vol. 58(6), pages 2321-2350, December.
    10. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    11. Choi, Jaewon & Kim, Yongjun, 2018. "Anomalies and market (dis)integration," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 16-34.
    12. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    13. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2019. "Common risk factors in the cross-section of corporate bond returns," Journal of Financial Economics, Elsevier, vol. 131(3), pages 619-642.
    14. Gebhardt, William R. & Hvidkjaer, Soeren & Swaminathan, Bhaskaran, 2005. "The cross-section of expected corporate bond returns: Betas or characteristics?," Journal of Financial Economics, Elsevier, vol. 75(1), pages 85-114, January.
    15. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    16. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    17. Doron Avramov & Tarun Chordia & Gergana Jostova & Alexander Philipov, 2007. "Momentum and Credit Rating," Journal of Finance, American Finance Association, vol. 62(5), pages 2503-2520, October.
    18. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    19. Büchner, Matthias & Kelly, Bryan, 2022. "A factor model for option returns," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1140-1161.
    20. Philippe Jorion & Gaiyan Zhang, 2009. "Credit Contagion from Counterparty Risk," Journal of Finance, American Finance Association, vol. 64(5), pages 2053-2087, October.
    21. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    22. Miller, Merton H & Scholes, Myron S, 1982. "Dividends and Taxes: Some Empirical Evidence," Journal of Political Economy, University of Chicago Press, vol. 90(6), pages 1118-1141, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
    2. Kewei Hou & Chen Xue & Lu Zhang, 2017. "Replicating Anomalies," NBER Working Papers 23394, National Bureau of Economic Research, Inc.
    3. Weichuan Deng & Pawel Polak & Abolfazl Safikhani & Ronakdilip Shah, 2023. "A Unified Framework for Fast Large-Scale Portfolio Optimization," Papers 2303.12751, arXiv.org, revised Nov 2023.
    4. Wang, Feifei & Yan, Xuemin Sterling, 2021. "Downside risk and the performance of volatility-managed portfolios," Journal of Banking & Finance, Elsevier, vol. 131(C).
    5. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    6. Fieberg, Christian & Günther, Steffen & Poddig, Thorsten & Zaremba, Adam, 2024. "Non-standard errors in the cryptocurrency world," International Review of Financial Analysis, Elsevier, vol. 92(C).
    7. Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).
    8. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    9. Yu-Chin Hsu & Hsiou-Wei Lin & Kendro Vincent, 2017. "Do Cross-Sectional Stock Return Predictors Pass the Test without Data-Snooping Bias?," IEAS Working Paper : academic research 17-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    10. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    11. Jie Cao & Amit Goyal & Xiao Xiao & Xintong Zhan, 2023. "Implied Volatility Changes and Corporate Bond Returns," Management Science, INFORMS, vol. 69(3), pages 1375-1397, March.
    12. Andrew Y. Chen & Tom Zimmermann, 2022. "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
    13. Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
    14. Tarun Chordia & Jianfeng Hu & Avanidhar Subrahmanyam & Qing Tong, 2019. "Order Flow Volatility and Equity Costs of Capital," Management Science, INFORMS, vol. 65(4), pages 1520-1551, April.
    15. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    16. Avanidhar Subrahmanyam, 2010. "The Cross†Section of Expected Stock Returns: What Have We Learnt from the Past Twenty†Five Years of Research?," European Financial Management, European Financial Management Association, vol. 16(1), pages 27-42, January.
    17. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Tuneshev, Ruslan, 2018. "Differences in options investors’ expectations and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 315-336.
    18. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    19. Amit Goyal & Alessio Saretto, 2022. "Are Equity Option Returns Abnormal? IPCA Says No," Working Papers 2214, Federal Reserve Bank of Dallas.
    20. Kaplanski, Guy, 2023. "The race to exploit anomalies and the cost of slow trading," Journal of Financial Markets, Elsevier, vol. 62(C).

    More about this item

    Keywords

    Factor model; Convertible bonds; Return predictability; Option pricing;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:233:y:2023:i:c:s0165176523003877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.