IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v226y2023ics0165176523001180.html
   My bibliography  Save this article

Measuring inequality in the joint distribution of socioeconomic status and health

Author

Listed:
  • Kobus, Martyna
  • Kurek, Radosław

Abstract

We propose new methods to measure socioeconomic inequalities in health when health and socioeconomic status are ordinal indicators. We propose dominance ordering and measures that are sensitive not only to between-group heterogeneity (i.e. increased spread), but also to within-group homogeneity (i.e. increased bipolarity). The latter aspect has been missing from the available measurement toolkit and we close this gap. Using data from the Survey of Health, Ageing and Retirement in Europe we show that accounting for increased bipolarity increases substantially the level of inequality, however, it does not affect the ranking of countries.

Suggested Citation

  • Kobus, Martyna & Kurek, Radosław, 2023. "Measuring inequality in the joint distribution of socioeconomic status and health," Economics Letters, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:ecolet:v:226:y:2023:i:c:s0165176523001180
    DOI: 10.1016/j.econlet.2023.111093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176523001180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2023.111093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benedicte Apouey, 2007. "Measuring health polarization with self‐assessed health data," Health Economics, John Wiley & Sons, Ltd., vol. 16(9), pages 875-894, September.
    2. Abul Naga, Ramses H. & Yalcin, Tarik, 2008. "Inequality measurement for ordered response health data," Journal of Health Economics, Elsevier, vol. 27(6), pages 1614-1625, December.
    3. Bénédicte Apouey & Jacques Silber, 2013. "Inequality and Bi-Polarization in Socioeconomic Status and Health: Ordinal Approaches," Research on Economic Inequality, in: Health and Inequality, volume 21, pages 77-109, Emerald Group Publishing Limited.
    4. Esteban, Joan & Ray, Debraj, 1994. "On the Measurement of Polarization," Econometrica, Econometric Society, vol. 62(4), pages 819-851, July.
    5. Frank A. Cowell & Emmanuel Flachaire, 2017. "Inequality with Ordinal Data," Economica, London School of Economics and Political Science, vol. 84(334), pages 290-321, April.
    6. Timothy N. Bond & Kevin Lang, 2019. "The Sad Truth about Happiness Scales," Journal of Political Economy, University of Chicago Press, vol. 127(4), pages 1629-1640.
    7. Makdissi, Paul & Yazbeck, Myra, 2014. "Measuring socioeconomic health inequalities in presence of multiple categorical information," Journal of Health Economics, Elsevier, vol. 34(C), pages 84-95.
    8. Adi Lazar & Jacques Silber, 2013. "On The Cardinal Measurement Of Health Inequality When Only Ordinal Information Is Available On Individual Health Status," Health Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 106-113, January.
    9. Ramses Abul Naga & Christopher Stapenhurst & Gaston Yalonetzky, 2020. "Asymptotic Versus Bootstrap Inference for Inequality Indices of the Cumulative Distribution Function," Econometrics, MDPI, vol. 8(1), pages 1-15, February.
    10. repec:hal:pseose:halshs-00850014 is not listed on IDEAS
    11. Mendelson, Haim, 1987. "Quantile-preserving spread," Journal of Economic Theory, Elsevier, vol. 42(2), pages 334-351, August.
    12. Kobus, Martyna & Miłoś, Piotr, 2012. "Inequality decomposition by population subgroups for ordinal data," Journal of Health Economics, Elsevier, vol. 31(1), pages 15-21.
    13. Sandip Sarkar & Sattwik Santra, 2020. "Extending the approaches to polarization ordering of ordinal variables," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(3), pages 421-440, September.
    14. Guangming Lv & Yang Wang & Yongsheng Xu, 2015. "On a new class of measures for health inequality based on ordinal data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 13(3), pages 465-477, September.
    15. Shorrocks, Anthony F, 1984. "Inequality Decomposition by Population Subgroups," Econometrica, Econometric Society, vol. 52(6), pages 1369-1385, November.
    16. Allison, R. Andrew & Foster, James E., 2004. "Measuring health inequality using qualitative data," Journal of Health Economics, Elsevier, vol. 23(3), pages 505-524, May.
    17. Satya R. Chakravarty & Bhargav Maharaj, 2015. "Generalized Gini polarization indices for an ordinal dimension of human well-being," International Journal of Economic Theory, The International Society for Economic Theory, vol. 11(2), pages 231-246, June.
    18. Larry G. Epstein & Stephen M. Tanny, 1980. "Increasing Generalized Correlation: A Definition and Some Economic Consequences," Canadian Journal of Economics, Canadian Economics Association, vol. 13(1), pages 16-34, February.
    19. van Doorslaer, Eddy & Wagstaff, Adam & Bleichrodt, Han & Calonge, Samuel & Gerdtham, Ulf-G. & Gerfin, Michael & Geurts, Jose & Gross, Lorna & Hakkinen, Unto & Leu, Robert E., 1997. "Income-related inequalities in health: some international comparisons," Journal of Health Economics, Elsevier, vol. 16(1), pages 93-112, February.
    20. Martyna Kobus, 2015. "Polarization measurement for ordinal data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 13(2), pages 275-297, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martyna Kobus & Radosław Kurek, 2019. "Multidimensional polarization for ordinal data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(3), pages 301-317, September.
    2. Yalonetzky, Gaston, 2022. "Consistent and inconsistent inequality indices for ordinal variables," Economics Letters, Elsevier, vol. 219(C).
    3. Martyna Kobus & Olga Półchłopek & Gaston Yalonetzky, 2019. "Inequality and Welfare in Quality of Life Among OECD Countries: Non-parametric Treatment of Ordinal Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 201-232, May.
    4. Frank A Cowell & Martyna Kobus & Radoslaw Kurek, 2017. "Welfare and Inequality Comparisons for Uni- and Multi-dimensional Distributions of Ordinal Data," STICERD - Public Economics Programme Discussion Papers 31, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Debasmita Basu & Sandip Sarkar, 2023. "Polarization in Indian Education: An Ordinal Variable Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(3), pages 569-591, September.
    6. Valérie Bérenger & Jacques Silber, 2022. "On the Measurement of Happiness and of its Inequality," Journal of Happiness Studies, Springer, vol. 23(3), pages 861-902, March.
    7. Silber, Jacques & Yalonetzky, Gaston, 2021. "Measuring welfare, inequality and poverty with ordinal variables," GLO Discussion Paper Series 962, Global Labor Organization (GLO).
    8. Tugce Cuhadaroglu, 2023. "Evaluating ordinal inequalities between groups," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 219-231, March.
    9. Sandip Sarkar & Sattwik Santra, 2020. "Extending the approaches to polarization ordering of ordinal variables," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(3), pages 421-440, September.
    10. I. Josa & A. Aguado, 2020. "Measuring Unidimensional Inequality: Practical Framework for the Choice of an Appropriate Measure," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(2), pages 541-570, June.
    11. Nicolas Gravel & Brice Magdalou & Patrick Moyes, 2021. "Ranking distributions of an ordinal variable," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(1), pages 33-80, February.
    12. Suman Seth and Gaston Yalonetzky, 2018. "Assessing Deprivation with Ordinal Variables: Depth Sensitivity and Poverty Aversion," OPHI Working Papers ophiwp123.pdf, Queen Elizabeth House, University of Oxford.
    13. Martyna Kobus & Radoslaw Kurek, 2017. "Copula-based measurement of interdependence for discrete distributions," Working Papers 431, ECINEQ, Society for the Study of Economic Inequality.
    14. Suman Seth & Gaston Yalonetzky, 2021. "Assessing Deprivation with an Ordinal Variable: Theory and Application to Sanitation Deprivation in Bangladesh," The World Bank Economic Review, World Bank, vol. 35(3), pages 793-811.
    15. Ramses H. Abul Naga & Christopher Stapenhurst & Gaston Yalonetzky, 2024. "Inferring inequality: Testing for median-preserving spreads in ordinal data," Econometric Reviews, Taylor & Francis Journals, vol. 43(2-4), pages 156-174, April.
    16. Martyna Kobus, 2014. "On the measurement of polarization for ordinal data," Working Papers 325, ECINEQ, Society for the Study of Economic Inequality.
    17. Martyna Kobus, 2015. "Polarization measurement for ordinal data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 13(2), pages 275-297, June.
    18. Joseph Deutsch & Jacques Silber, 2024. "A summary measure of answers to statements (SMAS) in the case of ordered rating scales," Economics Bulletin, AccessEcon, vol. 44(1), pages 283-294.
    19. Bénédicte Apouey & Jacques Silber, 2013. "Inequality and Bi-Polarization in Socioeconomic Status and Health: Ordinal Approaches," Research on Economic Inequality, in: Health and Inequality, volume 21, pages 77-109, Emerald Group Publishing Limited.
    20. Stephen P. Jenkins, 2021. "Inequality Comparisons with Ordinal Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(3), pages 547-563, September.

    More about this item

    Keywords

    Socioeconomic inequalities in health; Ordinal data; Polarization;
    All these keywords.

    JEL classification:

    • D6 - Microeconomics - - Welfare Economics
    • I1 - Health, Education, and Welfare - - Health
    • I3 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:226:y:2023:i:c:s0165176523001180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.