IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v224y2023ics0165176523000587.html
   My bibliography  Save this article

Time-varying predictability of the long horizon equity premium based on semiparametric regressions

Author

Listed:
  • Yu, Deshui
  • Chen, Li
  • Li, Luyang

Abstract

This paper proposes a novel semiparametric model for long-horizon predictive regressions, in which the coefficients are allowed to be unknown functions of time. We pursue an indirect approach to estimate the long-horizon coefficients through the implication of the short-horizon coefficients. Empirically, the dividend-price ratio predicts either stock returns or dividend growth, or both in any local period. In comparison, dividend growth is less predictable than stock returns.

Suggested Citation

  • Yu, Deshui & Chen, Li & Li, Luyang, 2023. "Time-varying predictability of the long horizon equity premium based on semiparametric regressions," Economics Letters, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:ecolet:v:224:y:2023:i:c:s0165176523000587
    DOI: 10.1016/j.econlet.2023.111033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176523000587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2023.111033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
    2. Cai, Zongwu & Wang, Yunfei & Wang, Yonggang, 2015. "Testing Instability In A Predictive Regression Model With Nonstationary Regressors," Econometric Theory, Cambridge University Press, vol. 31(5), pages 953-980, October.
    3. Jeremy Berkowitz & Lorenzo Giorgianni, 2001. "Long-Horizon Exchange Rate Predictability?," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 81-91, February.
    4. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    5. Ke-Li Xu & Lauren Cohen, 2020. "Testing for Multiple-Horizon Predictability: Direct Regression Based versus Implication Based," The Review of Financial Studies, Society for Financial Studies, vol. 33(9), pages 4403-4443.
    6. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
    7. Shao, Xiaofeng, 2010. "The Dependent Wild Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 218-235.
    8. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    9. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    10. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    11. JULES H. Van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present‐Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    12. Bin Chen & Yongmiao Hong, 2012. "Testing for Smooth Structural Changes in Time Series Models via Nonparametric Regression," Econometrica, Econometric Society, vol. 80(3), pages 1157-1183, May.
    13. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    14. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    15. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Deshui & Chen, Li, 2024. "Local predictability of stock returns and cash flows," Journal of Empirical Finance, Elsevier, vol. 77(C).
    2. Deshui Yu & Yayi Yan, 2023. "Joint dynamics of stock returns and cash flows: A time‐varying present‐value framework," Financial Management, Financial Management Association International, vol. 52(3), pages 513-541, September.
    3. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Deshui & Chen, Li, 2024. "Local predictability of stock returns and cash flows," Journal of Empirical Finance, Elsevier, vol. 77(C).
    2. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    3. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    4. Deshui Yu & Yayi Yan, 2023. "Joint dynamics of stock returns and cash flows: A time‐varying present‐value framework," Financial Management, Financial Management Association International, vol. 52(3), pages 513-541, September.
    5. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    6. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    7. Ilaria Piatti & Fabio Trojani, 2020. "Dividend Growth Predictability and the Price–Dividend Ratio," Management Science, INFORMS, vol. 66(1), pages 130-158, January.
    8. Maio, Paulo & Xu, Danielle, 2020. "Cash-flow or return predictability at long horizons? The case of earnings yield," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 172-192.
    9. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    10. le Bris, David & Goetzmann, William N. & Pouget, Sébastien, 2019. "The present value relation over six centuries: The case of the Bazacle company," Journal of Financial Economics, Elsevier, vol. 132(1), pages 248-265.
    11. Cheolbeom Park & Dong-hun Shin, 2014. "Stock Market Predictability: Global Evidence and an Explanation," Discussion Paper Series 1405, Institute of Economic Research, Korea University.
    12. Engsted, Tom & Pedersen, Thomas Q., 2010. "The dividend-price ratio does predict dividend growth: International evidence," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 585-605, September.
    13. Jank, Stephan, 2012. "Changes in the composition of publicly traded firms: Implications for the dividend-price ratio and return predictability," CFR Working Papers 12-08, University of Cologne, Centre for Financial Research (CFR).
    14. Chen, Sichong, 2012. "The predictability of aggregate Japanese stock returns: Implications of dividend yield," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 284-304.
    15. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    16. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    17. Stephan Jank, 2015. "Changes in the Composition of Publicly Traded Firms: Implications for the Dividend-Price Ratio and Return Predictability," Management Science, INFORMS, vol. 61(6), pages 1362-1377, June.
    18. Golez, Benjamin & Koudijs, Peter, 2018. "Four centuries of return predictability," Journal of Financial Economics, Elsevier, vol. 127(2), pages 248-263.
    19. Long Chen & Zhi Da & Richard Priestley, 2012. "Dividend Smoothing and Predictability," Management Science, INFORMS, vol. 58(10), pages 1834-1853, October.
    20. Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang, 2022. "Predicting returns and dividend growth — The role of non-Gaussian innovations," Finance Research Letters, Elsevier, vol. 46(PA).

    More about this item

    Keywords

    Long-horizon stock return; Time-varying coefficient; Profile estimation; Present-value model;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:224:y:2023:i:c:s0165176523000587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.