IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v208y2021ics0165176521003712.html
   My bibliography  Save this article

A small sigma approach to certain problems in errors-in-variables models

Author

Listed:
  • Hahn, Jinyong
  • Hausman, Jerry
  • Kim, Jeonghwan

Abstract

We propose a pragmatic approach to the errors-in-variables and nonlinear panel models. These models are often deemed impossible to estimate in their most general forms. For example, the higher order moments approach to errors-in-variables model fails when there is conditional heteroscedasticity. We propose estimating these models using approximate moments, using a Taylor series approximation applied to Kadane’s (1971) small sigma approach.

Suggested Citation

  • Hahn, Jinyong & Hausman, Jerry & Kim, Jeonghwan, 2021. "A small sigma approach to certain problems in errors-in-variables models," Economics Letters, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:ecolet:v:208:y:2021:i:c:s0165176521003712
    DOI: 10.1016/j.econlet.2021.110094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176521003712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.110094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    2. Amemiya, Yasuo, 1985. "Instrumental variable estimator for the nonlinear errors-in-variables model," Journal of Econometrics, Elsevier, vol. 28(3), pages 273-289, June.
    3. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    4. S. M. Schennach & Yingyao Hu, 2013. "Nonparametric Identification and Semiparametric Estimation of Classical Measurement Error Models Without Side Information," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 177-186, March.
    5. Susanne M. Schennach, 2016. "Recent Advances in the Measurement Error Literature," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 341-377, October.
    6. Jinyong Hahn & Jerry Hausman, 2010. "Estimation with Valid and Invalid Instruments," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 25-57, National Bureau of Economic Research, Inc.
    7. repec:adr:anecst:y:2005:i:79-80:p:02 is not listed on IDEAS
    8. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
    9. Amemiya, Yasuo, 1990. "Two-stage instrumental variables estimators for the nonlinear errors-in-variables model," Journal of Econometrics, Elsevier, vol. 44(3), pages 311-332, June.
    10. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    11. Aigner, Dennis J. & Hsiao, Cheng & Kapteyn, Arie & Wansbeek, Tom, 1984. "Latent variable models in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 23, pages 1321-1393, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
    2. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Mar 2024.
    3. Kirill Evdokimov & Andrei Zeleneev, 2024. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 05/24, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
    2. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Mar 2024.
    3. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    4. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
    5. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    6. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    7. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Ben-Moshe, Dan, 2018. "Identification Of Joint Distributions In Dependent Factor Models," Econometric Theory, Cambridge University Press, vol. 34(1), pages 134-165, February.
    9. Chong Terence Tai-Leung & Chen Haiqiang & Wong Tsz-Nga & Yan Isabel Kit-Ming, 2018. "Estimation and inference of threshold regression models with measurement errors," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-16, April.
    10. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    11. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    12. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    13. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    14. Gospodinov, Nikolay & Komunjer, Ivana & Ng, Serena, 2017. "Simulated minimum distance estimation of dynamic models with errors-in-variables," Journal of Econometrics, Elsevier, vol. 200(2), pages 181-193.
    15. Mochen Yang & Edward McFowland & Gordon Burtch & Gediminas Adomavicius, 2022. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 138-155, October.
    16. Nikolay Gospodinov & Ivana Komunjer & Serena Ng, 2014. "Minimum Distance Estimation of Dynamic Models with Errors-In-Variables," FRB Atlanta Working Paper 2014-11, Federal Reserve Bank of Atlanta.
    17. Tom Boot & Art=uras Juodis, 2023. "Uniform Inference in Linear Error-in-Variables Models: Divide-and-Conquer," Papers 2301.04439, arXiv.org.
    18. Stoker, Thomas M. & Berndt, Ernst R. & Denny Ellerman, A. & Schennach, Susanne M., 2005. "Panel data analysis of U.S. coal productivity," Journal of Econometrics, Elsevier, vol. 127(2), pages 131-164, August.
    19. Bo Honoré & Thomas Jørgensen & Áureo de Paula, 2020. "The informativeness of estimation moments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 797-813, November.
    20. Victor Duarte & Diogo Duarte & Dejanir H. Silva, 2024. "Machine Learning for Continuous-Time Finance," CESifo Working Paper Series 10909, CESifo.

    More about this item

    Keywords

    Errors-in-variables; Small sigma;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:208:y:2021:i:c:s0165176521003712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.