IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v202y2021ics016517652100104x.html
   My bibliography  Save this article

Robust conditional expectation reward–risk performance measures

Author

Listed:
  • Kouaissah, Noureddine

Abstract

In this paper, we develop robust portfolio optimization models for conditional expectation type reward–risk performance measures that significantly improve upon conventional portfolio selection techniques. In particular, we directly address estimation error in the portfolio optimization process by adopting a robust optimization method that is typically used with conventional robust statistical estimation techniques. Alongside this robust optimization, we propose the use of an early-warning system based on moving averages to predict market crises. Empirical analyses based on the US stock market validate the proposed robust approaches and highlight the implications of financial crises for portfolio selection problems. The results confirm that the proposed robust portfolio optimization models substantially improve upon their conventional counterparts for out-of-sample portfolios, providing valuable managerial insights.

Suggested Citation

  • Kouaissah, Noureddine, 2021. "Robust conditional expectation reward–risk performance measures," Economics Letters, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:ecolet:v:202:y:2021:i:c:s016517652100104x
    DOI: 10.1016/j.econlet.2021.109827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016517652100104X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.109827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    2. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    3. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2017. "On the impact of conditional expectation estimators in portfolio theory," Computational Management Science, Springer, vol. 14(4), pages 535-557, October.
    4. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2019. "On the use of conditional expectation in portfolio selection problems," Annals of Operations Research, Springer, vol. 274(1), pages 501-530, March.
    5. Pflug, Georg Ch. & Pichler, Alois & Wozabal, David, 2012. "The 1/N investment strategy is optimal under high model ambiguity," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 410-417.
    6. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    7. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    8. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    9. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    10. Sebastián Ceria & Robert A Stubbs, 2006. "Incorporating estimation errors into portfolio selection: Robust portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 7(2), pages 109-127, July.
    11. Evan W. Anderson & Ai-Ru (Meg) Cheng, 2016. "Robust Bayesian Portfolio Choices," The Review of Financial Studies, Society for Financial Studies, vol. 29(5), pages 1330-1375.
    12. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    13. Katrin Schöttle & Ralf Werner & Rudi Zagst, 2010. "Comparison and robustification of Bayes and Black-Litterman models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 453-475, June.
    14. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    15. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kouaissah, Noureddine, 2023. "Robust reward-risk performance measures with weakly second-order stochastic dominance constraints," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 53-62.
    2. Kouaissah, Noureddine, 2021. "Using multivariate stochastic dominance to enhance portfolio selection and warn of financial crises," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 480-493.
    3. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    4. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    5. Zymler, Steve & Rustem, Berç & Kuhn, Daniel, 2011. "Robust portfolio optimization with derivative insurance guarantees," European Journal of Operational Research, Elsevier, vol. 210(2), pages 410-424, April.
    6. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    7. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    8. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    9. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).
    10. Gabriel Frahm & Tobias Wickern & Christof Wiechers, 2012. "Multiple tests for the performance of different investment strategies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 343-383, July.
    11. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    12. André Alves Portela Santos, 2010. "The Out-of-Sample Performance of Robust Portfolio Optimization," Brazilian Review of Finance, Brazilian Society of Finance, vol. 8(2), pages 141-166.
    13. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    14. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    15. Jongbin Jung & Seongmoon Kim, 2017. "Developing a dynamic portfolio selection model with a self-adjusted rebalancing method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 766-779, July.
    16. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    17. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    18. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    19. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    20. Jianqing Fan & Jingjin Zhang & Ke Yu, 2008. "Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios," Papers 0812.2604, arXiv.org.

    More about this item

    Keywords

    Portfolio selection; Robust portfolio optimization; KOT and JTOK performance measures; Early-warning system;
    All these keywords.

    JEL classification:

    • G00 - Financial Economics - - General - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:202:y:2021:i:c:s016517652100104x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.