Score test for parameter change in Poisson autoregressive models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2017.08.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ilia Negri & Yoichi Nishiyama, 2017. "Z-process method for change point problems with applications to discretely observed diffusion processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 231-250, June.
- William Kengne & Paul Doukhan, 2015. "Inference and testing for structural change in general Poisson autoregressive models," Post-Print hal-02979913, HAL.
- Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
- Andrews, Donald W K, 1993.
"Tests for Parameter Instability and Structural Change with Unknown Change Point,"
Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
- Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
- Berkes, Istvan & Horváth, Lajos & Kokoszka, Piotr, 2004. "Testing for parameter constancy in GARCH(p,q) models," Statistics & Probability Letters, Elsevier, vol. 70(4), pages 263-273, December.
- Jiwon Kang & Sangyeol Lee, 2009. "Parameter change test for random coefficient integer‐valued autoregressive processes with application to polio data analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 239-258, March.
- Paul Doukhan & William Kengne, 2015. "Inference and testing for structural change in general Poisson autoregressive models," Post-Print hal-02979929, HAL.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mamadou Lamine Diop & William Kengne, 2022. "Poisson QMLE for change-point detection in general integer-valued time series models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 373-403, April.
- Song, Junmo & Baek, Changryong, 2019. "Detecting structural breaks in realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 58-75.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
- Youngmi Lee & Sangyeol Lee & Dag Tjøstheim, 2018. "Asymptotic normality and parameter change test for bivariate Poisson INGARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 52-69, March.
- William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
- Byungsoo Kim & Sangyeol Lee, 2020. "Robust estimation for general integer-valued time series models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1371-1396, December.
- Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
- Mamadou Lamine Diop & William Kengne, 2017. "Testing Parameter Change in General Integer-Valued Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 880-894, November.
- Yunwei Cui & Rongning Wu & Qi Zheng, 2021. "Estimation of change‐point for a class of count time series models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1277-1313, December.
- Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
- Song, Junmo & Kang, Jiwon, 2018. "Parameter change tests for ARMA–GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 41-56.
- Mamadou Lamine Diop & William Kengne, 2022. "Poisson QMLE for change-point detection in general integer-valued time series models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 373-403, April.
- Oka, Tatsushi & Qu, Zhongjun, 2011.
"Estimating structural changes in regression quantiles,"
Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
- Zhongjun Qu & Tatsushi Oka, 2010. "Estimating structural changes in regression quantiles," Boston University - Department of Economics - Working Papers Series WP2010-052, Boston University - Department of Economics.
- Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
- Haipeng Xing & Hongsong Yuan & Sichen Zhou, 2017. "A Mixtured Localized Likelihood Method for GARCH Models with Multiple Change-points," Review of Economics & Finance, Better Advances Press, Canada, vol. 8, pages 44-60, May.
- Haejune Oh & Sangyeol Lee, 2019. "Modified residual CUSUM test for location-scale time series models with heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1059-1091, October.
- Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
- Kang, Jiwon & Song, Junmo, 2015. "Robust parameter change test for Poisson autoregressive models," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 14-21.
- Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008.
"Testing for a change in persistence in the presence of non-stationary volatility,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 84-98, November.
- Giuseppe Cavaliere & A. M. Robert Taylor, 2006. "Testing for a change in persistence in the presence of non-stationary volatility," Discussion Papers 06/04, University of Nottingham, Granger Centre for Time Series Econometrics.
- Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
- Paul Doukhan & Konstantinos Fokianos & Joseph Rynkiewicz, 2021. "Mixtures of Nonlinear Poisson Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 107-135, January.
- Joshy Easaw & Roberto Golinelli, 2022. "Professionals Inflation Forecasts: The Two Dimensions Of Forecaster Inattentiveness [“Sectoral and aggregate inflation dynamics in the euro area”]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 701-720.
More about this item
Keywords
Poisson autoregressive model; Test for parameter change; Score-based test;All these keywords.
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:160:y:2017:i:c:p:33-37. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.