IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v74y2024ics1062940824001190.html
   My bibliography  Save this article

A crisis like no other? Financial market analogies of the COVID-19-cum-Ukraine war crisis

Author

Listed:
  • Andrada-Félix, Julián
  • Fernández-Rodríguez, Fernando
  • Sosvilla-Rivero, Simón

Abstract

In this paper, we examine the dynamic behaviour of the US stock market due to the subsequent impact of the COVID-19 outbreak and the war in Ukraine. To that end, we analyse daily data of Dow Jones Industrial Average returns from 2 January 1900 to 31 October 2022. Firstly, we identify past crisis episodes similar to the current situation. Then, we compare the volatility dynamics, variation-fluctuation correlation functions, and correlation with uncertainty indicators with those induced by the COVID-19 epidemic and the subsequent Russo-Ukrainian conflict. Our findings suggest that the consecutive occurrence of these unexpected events has had more severe adverse effects on the US stock market than those recorded in similar past episodes. Additionally, we found that the events are highly correlated with indicators of economic policy uncertainty and financial market fear.

Suggested Citation

  • Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Sosvilla-Rivero, Simón, 2024. "A crisis like no other? Financial market analogies of the COVID-19-cum-Ukraine war crisis," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:ecofin:v:74:y:2024:i:c:s1062940824001190
    DOI: 10.1016/j.najef.2024.102194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940824001190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2024.102194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    2. Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-859.
    3. Singh, Amanjot & Patel, Ritesh & Singh, Harminder, 2022. "Recalibration of priorities: Investor preference and Russia-Ukraine conflict," Finance Research Letters, Elsevier, vol. 50(C).
    4. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    5. Rigobon, Roberto & Sack, Brian, 2005. "The effects of war risk on US financial markets," Journal of Banking & Finance, Elsevier, vol. 29(7), pages 1769-1789, July.
    6. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Measuring uncertainty in the stock market," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 18-33.
    7. Kumar, Sanjeev & Patel, Ritesh & Iqbal, Najaf & Gubareva, Mariya, 2023. "Interconnectivity among cryptocurrencies, NFTs, and DeFi: Evidence from the Russia-Ukraine conflict," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
    8. Afees A. Salisu & Lukman Lasisi & Jean Paul Tchankam, 2022. "Historical geopolitical risk and the behaviour of stock returns in advanced economies," The European Journal of Finance, Taylor & Francis Journals, vol. 28(9), pages 889-906, June.
    9. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    10. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    11. Shehzad, Khurram & Xiaoxing, Liu & Kazouz, Hayfa, 2020. "COVID-19’s disasters are perilous than Global Financial Crisis: A rumor or fact?," Finance Research Letters, Elsevier, vol. 36(C).
    12. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
    13. Veldkamp, Laura & Orlik, Anna, 2014. "Understanding Uncertainty Shocks and the Role of Black Swans," CEPR Discussion Papers 10147, C.E.P.R. Discussion Papers.
    14. X. F. Jiang & T. T. Chen & B. Zheng, 2013. "Time-reversal asymmetry in financial systems," Papers 1308.0669, arXiv.org.
    15. López, Raquel & Sevillano, María Caridad & Jareño, Francisco, 2023. "Uncertainty and US stock market dynamics," Global Finance Journal, Elsevier, vol. 56(C).
    16. Fabrizio Lillo & Rosario N. Mantegna, 2001. "Power law relaxation in a complex system: Omori law after a financial market crash," Papers cond-mat/0111257, arXiv.org, revised Jun 2003.
    17. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    18. Yousaf, Imran & Patel, Ritesh & Yarovaya, Larisa, 2022. "The reaction of G20+ stock markets to the Russia–Ukraine conflict “black-swan” event: Evidence from event study approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 35(C).
    19. Jianping Mei & Limin Guo, 2004. "Political Uncertainty, Financial Crisis and Market Volatility," European Financial Management, European Financial Management Association, vol. 10(4), pages 639-657, December.
    20. Ichev, Riste & Marinč, Matej, 2018. "Stock prices and geographic proximity of information: Evidence from the Ebola outbreak," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 153-166.
    21. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    22. Qiu, T. & Zheng, B. & Ren, F. & Trimper, S., 2007. "Statistical properties of German Dax and Chinese indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 387-398.
    23. Izzeldin, Marwan & Muradoğlu, Yaz Gülnur & Pappas, Vasileios & Petropoulou, Athina & Sivaprasad, Sheeja, 2023. "The impact of the Russian-Ukrainian war on global financial markets," International Review of Financial Analysis, Elsevier, vol. 87(C).
    24. Patel, Ritesh & Kumar, Sanjeev & Bouri, Elie & Iqbal, Najaf, 2023. "Spillovers between green and dirty cryptocurrencies and socially responsible investments around the war in Ukraine," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 143-162.
    25. Jiang, X.F. & Chen, T.T. & Zheng, B., 2013. "Time-reversal asymmetry in financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5369-5375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-jie Chen & Bo Zheng & Lei Tan, 2014. "Agent-based model with asymmetric trading and herding for complex financial systems," Papers 1407.5258, arXiv.org.
    2. Jun-Jie Chen & Bo Zheng & Lei Tan, 2013. "Agent-Based Model with Asymmetric Trading and Herding for Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-11, November.
    3. Liu, Jiatong & Zhu, You & Wang, Gang-Jin & Xie, Chi & Wang, Qilin, 2024. "Risk contagion of NFT: A time-frequency risk spillover perspective in the Carbon-NFT-Stock system," Finance Research Letters, Elsevier, vol. 59(C).
    4. Pagnottoni, Paolo & Spelta, Alessandro & Pecora, Nicolò & Flori, Andrea & Pammolli, Fabio, 2021. "Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    5. Ali, Syed Riaz Mahmood & Anik, Kaysul Islam & Hasan, Mohammad Nurul & Kamal, Md Rajib, 2023. "Geopolitical threats, equity returns, and optimal hedging," International Review of Financial Analysis, Elsevier, vol. 90(C).
    6. Jin, Lifu & Zheng, Bo & Ma, Jiahao & Zhang, Jiu & Xiong, Long & Jiang, Xiongfei & Li, Jiangcheng, 2022. "Empirical study and model simulation of global stock market dynamics during COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Han, Liyan & Liu, Yang & Yin, Libo, 2019. "Uncertainty and currency performance: A quantile-on-quantile approach," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 702-729.
    8. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    9. Ouyang, F.Y. & Zheng, B. & Jiang, X.F., 2014. "Spatial and temporal structures of four financial markets in Greater China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 236-244.
    10. Marcus Alexander Ong, 2015. "An information theoretic analysis of stock returns, volatility and trading volumes," Applied Economics, Taylor & Francis Journals, vol. 47(36), pages 3891-3906, August.
    11. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    12. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    13. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Doğan, Buhari & Adekoya, Oluwasegun B. & Wohar, Mark, 2024. "Asymmetric spillover effects in energy markets," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 470-502.
    14. Salisu, Afees A. & Vo, Xuan Vinh & Lucey, Brian, 2021. "Gold and US sectoral stocks during COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 57(C).
    15. Zhang, Pengcheng & Xu, Kunpeng & Qi, Jiayin, 2023. "The impact of regulation on cryptocurrency market volatility in the context of the COVID-19 pandemic — evidence from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 222-246.
    16. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    17. Omar, Ayman M.A. & Lambe, Brendan J & Wisniewski, Tomasz Piotr, 2021. "Perceptions of the threat to national security and the stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 504-522.
    18. Saygin Sahinoz & Evren Erdogan Cosar, 2020. "Quantifying uncertainty and identifying its impacts on the Turkish economy," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(2), pages 365-387, May.
    19. Atri, Hanen & Kouki, Saoussen & Gallali, Mohamed imen, 2021. "The impact of COVID-19 news, panic and media coverage on the oil and gold prices: An ARDL approach," Resources Policy, Elsevier, vol. 72(C).
    20. Hassan, M. Kabir & Kayhana, Selim & Bayatb, Tayfur, 2016. "The Relation between Return and Volatility in ETFs Traded in Borsa Istanbul: Is there any Difference between Islamic and Conventional ETFs?," Islamic Economic Studies, The Islamic Research and Training Institute (IRTI), vol. 24, pages 45-76.

    More about this item

    Keywords

    COVID-19 pandemic; Ukraine war; Financial crisis; Stock markets; Analogies;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:74:y:2024:i:c:s1062940824001190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.