IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v28y2011i1p482-488.html
   My bibliography  Save this article

Estimates for the optimal control policy in the presence of regulations and heavy tails

Author

Listed:
  • Manman, Li
  • Zaiming, Liu
  • Hua, Dong

Abstract

We consider a classical heavy tailed risk model, included in a regulation mechanism. The regulator exercises a minimal cash requirement level and penalties for violating it to regulate the insurance firm. The problem of the insurance firm is to establish an investment and risk exposure policy as well as a barrier dividend strategy, which is a function of the strategy used by the regulator. For regularly varying tailed claim size distributions, we find the asymptotics of the stationary distribution of the risk model and derive fundamental asymptotic results of the insurance firm's problem. In the special case of Pareto claim size distributions, the asymptotic optimal control policy is found in closed form, as well as numerical results.

Suggested Citation

  • Manman, Li & Zaiming, Liu & Hua, Dong, 2011. "Estimates for the optimal control policy in the presence of regulations and heavy tails," Economic Modelling, Elsevier, vol. 28(1), pages 482-488.
  • Handle: RePEc:eee:ecmode:v:28:y:2011:i:1:p:482-488
    DOI: 10.1016/j.econmod.2010.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999310001379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2010.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickson, D. C. M. & Drekic, S., 2006. "Optimal Dividends Under a Ruin Probability Constraint," Annals of Actuarial Science, Cambridge University Press, vol. 1(2), pages 291-306, September.
    2. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    3. Tapiero, Charles S. & Zuckerman, Dror, 1983. "Optimal investment policy of an insurance firm," Insurance: Mathematics and Economics, Elsevier, vol. 2(2), pages 103-112, April.
    4. Gaier, Johanna & Grandits, Peter, 2002. "Ruin probabilities in the presence of regularly varying tails and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 211-217, April.
    5. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Manman & Liu, Zaiming, 2012. "Regulated absolute ruin problem with interest structure and linear dividend barrier," Economic Modelling, Elsevier, vol. 29(5), pages 1786-1792.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manman, Li & Zaiming, Liu & Hua, Dong, 2011. "Estimates for the optimal control policy in the presence of regulations and heavy tails," Economic Modelling, Elsevier, vol. 28(1-2), pages 482-488, January.
    2. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    3. Schmidli, Hanspeter, 2005. "On optimal investment and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 25-35, February.
    4. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    5. Azcue, Pablo & Muler, Nora, 2009. "Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 26-34, February.
    6. Arash Fahim & Lingjiong Zhu, 2015. "Optimal Investment in a Dual Risk Model," Papers 1510.04924, arXiv.org, revised Feb 2023.
    7. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    8. Henrik Hult & Filip Lindskog, 2011. "Ruin probabilities under general investments and heavy-tailed claims," Finance and Stochastics, Springer, vol. 15(2), pages 243-265, June.
    9. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
    10. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    11. Emms, P. & Haberman, S., 2007. "Asymptotic and numerical analysis of the optimal investment strategy for an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 113-134, January.
    12. Irgens, Christian & Paulsen, Jostein, 2004. "Optimal control of risk exposure, reinsurance and investments for insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 21-51, August.
    13. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    14. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    15. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    16. Vierkötter, Matthias & Schmidli, Hanspeter, 2017. "On optimal dividends with exponential and linear penalty payments," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 265-270.
    17. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    18. J. Cerda-Hernandez & A. Sikov & A. Ramos, 2022. "An optimal investment strategy aimed at maximizing the expected utility across all intermediate capital levels," Papers 2207.02947, arXiv.org, revised Jun 2024.
    19. Wang, Rongming & Yang, Hailiang & Wang, Hanxing, 2004. "On the distribution of surplus immediately after ruin under interest force and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 703-714, December.
    20. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.

    More about this item

    Keywords

    Optimal control policy; Regular variation; Stationary distribution; Required barrier policy; Penalty cost;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:28:y:2011:i:1:p:482-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.