IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v147y2025ics0264999325000410.html
   My bibliography  Save this article

Scaling and forecasting in a data-driven agent-based model: Applications to the Italian macroeconomy

Author

Listed:
  • Domenico, Jacopo Di
  • Catalano, Michele
  • Riccetti, Luca

Abstract

Agent-based models typically replicate stylized facts but lack macroeconomic forecasting capabilities. Recent advancements aim to make these models data-driven, enabling predictive applications in macroeconomics. Using data primarily from Eurostat (1996–2019), we calibrate an increasingly popular data-driven model to the Italian economy and evaluate the forecasting performance of macroeconomic variables for both Austria and Italy across various model scales. Our findings show that scale has no impact on forecast accuracy. To enhance the model we test modifications to agents’ expectations and firms’ production plans, and run long-term simulations to explore model dynamics and identify areas for refinement. The results demonstrate the model’s adaptability to different country specifications, with forecasting performance comparable to basic econometric models. Scale analysis and long-term analysis reveal unexplored heterogeneity and suggest that the model should further leverage the potential of agent-based microfoundations to improve forecasting.

Suggested Citation

  • Domenico, Jacopo Di & Catalano, Michele & Riccetti, Luca, 2025. "Scaling and forecasting in a data-driven agent-based model: Applications to the Italian macroeconomy," Economic Modelling, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:ecmode:v:147:y:2025:i:c:s0264999325000410
    DOI: 10.1016/j.econmod.2025.107046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999325000410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2025.107046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Agent-based models; Behavioral macroeconomic - calibration; Macroeconomic forecasting; Scale; Simulation;
    All these keywords.

    JEL classification:

    • E70 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:147:y:2025:i:c:s0264999325000410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.