IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v144y2025ics0264999324003389.html
   My bibliography  Save this article

Improving minimum-variance portfolio through shrinkage of large covariance matrices

Author

Listed:
  • Shi, Fangquan
  • Shu, Lianjie
  • He, Fangyi
  • Huang, Wenpo

Abstract

The global minimum-variance (GMV) portfolio derived from the sample covariance matrix often performs poorly due to large estimation errors. Linear shrinkage covariance estimators have been extensively studied to address this issue. This study proposes an optimal shrinkage intensity selection for the linear shrinkage estimator family using cross-validated negative log-likelihood function minimization. Moreover, we provide theoretical insights into the selection process. Empirical studies have shown that the proposed approach produces more stable covariance matrix estimators than the Frobenius loss minimization method, resulting in improved GMV portfolios. Furthermore, linear shrinkage estimators that use a diagonal matrix or a matrix based on a one-factor model as the target matrix generally achieve the best performance. They also outperform nonlinear shrinkage covariance estimators, especially with a large number of assets. This superiority is evident in terms of out-of-sample variance, turnover, and the Sharpe ratio.

Suggested Citation

  • Shi, Fangquan & Shu, Lianjie & He, Fangyi & Huang, Wenpo, 2025. "Improving minimum-variance portfolio through shrinkage of large covariance matrices," Economic Modelling, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:ecmode:v:144:y:2025:i:c:s0264999324003389
    DOI: 10.1016/j.econmod.2024.106981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999324003389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2024.106981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:144:y:2025:i:c:s0264999324003389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.