IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v133y2024ics0264999324000269.html
   My bibliography  Save this article

Solving linear DSGE models with Newton methods

Author

Listed:
  • Meyer-Gohde, Alexander
  • Saecker, Johanna

Abstract

This paper presents and compares Newton-based methods from the applied mathematics literature for solving the matrix quadratic that underlies the recursive solution of linear DSGE models. The methods are compared using nearly 100 different models from the Macroeconomic Model Data Base (MMB) and different parameterizations of the monetary policy rule in the medium-scale New Keynesian model of Smets and Wouters (2007) iteratively. We find that Newton-based methods compare favorably in solving DSGE models, providing higher accuracy as measured by the forward error of the solution at a comparable computation burden. The methods, however, suffer from their inability to guarantee convergence to a particular, e.g. unique stable, solution, but their iterative procedures lend themselves to refining solutions either from different methods or parameterizations.

Suggested Citation

  • Meyer-Gohde, Alexander & Saecker, Johanna, 2024. "Solving linear DSGE models with Newton methods," Economic Modelling, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:ecmode:v:133:y:2024:i:c:s0264999324000269
    DOI: 10.1016/j.econmod.2024.106670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999324000269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2024.106670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blanchard, Olivier J, 1979. "Backward and Forward Solutions for Economies with Rational Expectations," American Economic Review, American Economic Association, vol. 69(2), pages 114-118, May.
    2. Anderson, Gary S., 2010. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 472-489, March.
    3. Anderson, Gary & Moore, George, 1985. "A linear algebraic procedure for solving linear perfect foresight models," Economics Letters, Elsevier, vol. 17(3), pages 247-252.
    4. Wieland, Volker & Cwik, Tobias & Müller, Gernot J. & Schmidt, Sebastian & Wolters, Maik, 2012. "A new comparative approach to macroeconomic modeling and policy analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 523-541.
    5. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    6. Villemot, Sébastien, 2011. "Solving rational expectations models at first order: what Dynare does," Dynare Working Papers 2, CEPREMAP.
    7. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    8. Binder, Michael & Pesaran, M. Hashem, 1997. "Multivariate Linear Rational Expectations Models," Econometric Theory, Cambridge University Press, vol. 13(6), pages 877-888, December.
    9. Gary S. Anderson & Andrew T. Levin & Eric T. Swanson, 2006. "Higher-order perturbation solutions to dynamic, discrete-time rational expectations models," Working Paper Series 2006-01, Federal Reserve Bank of San Francisco.
    10. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meyer-Gohde, Alexander, 2023. "Solving linear DSGE models with Bernoulli iterations," IMFS Working Paper Series 182, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    2. Meyer-Gohde, Alexander, 2023. "Numerical stability analysis of linear DSGE models: Backward errors, forward errors and condition numbers," IMFS Working Paper Series 193, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    3. Huber, Johannes & Meyer-Gohde, Alexander & Saecker, Johanna, 2023. "Solving linear DSGE models with structure-preserving doubling methods," IMFS Working Paper Series 195, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer-Gohde, Alexander, 2023. "Solving linear DSGE models with Bernoulli iterations," IMFS Working Paper Series 182, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    2. Meyer-Gohde, Alexander, 2023. "Numerical stability analysis of linear DSGE models: Backward errors, forward errors and condition numbers," IMFS Working Paper Series 193, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    3. Meyer-Gohde, Alexander, 2021. "On the accuracy of linear DSGE solution methods and the consequences for log-normal asset pricing," IMFS Working Paper Series 154, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    4. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    5. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    6. Huber, Johannes & Meyer-Gohde, Alexander & Saecker, Johanna, 2023. "Solving linear DSGE models with structure-preserving doubling methods," IMFS Working Paper Series 195, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    7. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    8. Wieland, V. & Afanasyeva, E. & Kuete, M. & Yoo, J., 2016. "New Methods for Macro-Financial Model Comparison and Policy Analysis," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1241-1319, Elsevier.
    9. Malin Adolfson & Stefan Las√Âen & Jesper Lind√ & Lars E.O. Svensson, 2011. "Optimal Monetary Policy in an Operational Medium-Sized DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(7), pages 1287-1331, October.
    10. Lan, Hong & Meyer-Gohde, Alexander, 2014. "Solvability of perturbation solutions in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 366-388.
    11. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    12. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    13. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    14. Boehl, Gregor, 2022. "Efficient solution and computation of models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    15. repec:hum:wpaper:sfb649dp2012-015 is not listed on IDEAS
    16. Mariano Kulish & Adrian Pagan, 2017. "Estimation and Solution of Models with Expectations and Structural Changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 255-274, March.
    17. Meyer-Gohde, Alexander, 2024. "Solving and analyzing DSGE models in the frequency domain," IMFS Working Paper Series 207, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    18. Hatcher, Michael, 2022. "Solving linear rational expectations models in the presence of structural change: Some extensions," Journal of Economic Dynamics and Control, Elsevier, vol. 138(C).
    19. Anna Mikusheva, 2014. "Estimation of dynamic stochastic general equilibrium models (in Russian)," Quantile, Quantile, issue 12, pages 1-21, February.
    20. Ajevskis, Viktors, 2019. "Nonlocal Solutions To Dynamic Equilibrium Models: The Approximate Stable Manifolds Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 23(6), pages 2544-2571, September.
    21. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.

    More about this item

    Keywords

    Numerical accuracy; DSGE; Solution methods;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:133:y:2024:i:c:s0264999324000269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.