IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v32y2008i12p3807-3819.html
   My bibliography  Save this article

A hidden Markov model of credit quality

Author

Listed:
  • Korolkiewicz, Malgorzata W.
  • Elliott, Robert J.

Abstract

This paper presents a hidden Markov model of credit quality dynamics, and highlights the use of filtering-based estimation methods for models of this kind. We suppose that the Markov chain governing the 'true' credit quality evolution is hidden in 'noisy' or incomplete observations represented by posted credit ratings. Parameters of the model, namely credit transition probabilities, are estimated using the EM algorithm. Filtering methods provide recursive updates of optimal estimates so the model is 'self-calibrating'. The estimation procedure is illustrated with an application to a data set of Standard & Poor's credit ratings.

Suggested Citation

  • Korolkiewicz, Malgorzata W. & Elliott, Robert J., 2008. "A hidden Markov model of credit quality," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3807-3819, December.
  • Handle: RePEc:eee:dyncon:v:32:y:2008:i:12:p:3807-3819
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(08)00060-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carey, Mark & Hrycay, Mark, 2001. "Parameterizing credit risk models with rating data," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 197-270, January.
    2. Altman, Edward I., 1998. "The importance and subtlety of credit rating migration," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1231-1247, October.
    3. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    4. Loffler, Gunter, 2005. "Avoiding the rating bounce: why rating agencies are slow to react to new information," Journal of Economic Behavior & Organization, Elsevier, vol. 56(3), pages 365-381, March.
    5. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.
    2. Puneet Pasricha & Dharmaraja Selvamuthu & Guglielmo D’Amico & Raimondo Manca, 2020. "Portfolio optimization of credit risky bonds: a semi-Markov process approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    3. D. V. Boreiko & Y. M. Kaniovski & G. Ch. Pflug, 2016. "Modeling dependent credit rating transitions: a comparison of coupling schemes and empirical evidence," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 989-1007, December.
    4. Areski Cousin & Jérôme Lelong & Tom Picard, 2022. "Rating transitions forecasting: a filtering approach," Working Papers hal-03347521, HAL.
    5. Liu, Wei-han, 2018. "Hidden Markov model analysis of extreme behaviors of foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1007-1019.
    6. D. V. Boreiko & Y. M. Kaniovski & G. Ch. Pflug, 2017. "Numerical Modeling of Dependent Credit Rating Transitions with Asynchronously Moving Industries," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 499-516, March.
    7. Areski Cousin & J'er^ome Lelong & Tom Picard, 2021. "Rating transitions forecasting: a filtering approach," Papers 2109.10567, arXiv.org, revised Jun 2023.
    8. Dmitri Boreiko & Serguei Kaniovski & Yuri Kaniovski & Georg Ch. Pflug, 2018. "Business Cycles and Conditional Credit-Rating Migration Matrices," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-19, December.
    9. Damian Camilla & Eksi Zehra & Frey Rüdiger, 2018. "EM algorithm for Markov chains observed via Gaussian noise and point process information: Theory and case studies," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 51-72, January.
    10. Lu, Jianjun & Tokinaga, Shozo, 2014. "Estimation of state changes in system descriptions for dynamic Bayesian networks by using a genetic procedure and particle filters," Economic Modelling, Elsevier, vol. 39(C), pages 138-145.
    11. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    12. Yun-Ling Wu & Cheng-Huang Tung & Chun-Chang Lee, 2017. "The Power of a Leading Indicators Fluctuation Trend for Forecasting Taiwans Real Estate Business Cycle: An Application of a Hidden Markov Model," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 7(1), pages 81-98, January.
    13. Areski Cousin & Jérôme Lelong & Tom Picard, 2023. "Rating transitions forecasting: a filtering approach," Post-Print hal-03347521, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altman, Edward I. & Rijken, Herbert A., 2004. "How rating agencies achieve rating stability," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2679-2714, November.
    2. Georges Dionne & Geneviève Gauthier & Khemais Hammami & Mathieu Maurice & Jean‐Guy Simonato, 2010. "Default Risk in Corporate Yield Spreads," Financial Management, Financial Management Association International, vol. 39(2), pages 707-731, June.
    3. Johannes Hörner & Nicolas S Lambert, 2021. "Motivational Ratings [Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(4), pages 1892-1935.
    4. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "On sovereign credit migration: A study of alternative estimators and rating dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3448-3469, April.
    5. Huong Dang, 2014. "How dimensions of national culture and institutional characteristics influence sovereign rating migration dynamics," ZenTra Working Papers in Transnational Studies 42 / 2014, ZenTra - Center for Transnational Studies.
    6. Feng, D. & Gourieroux, C. & Jasiak, J., 2008. "The ordered qualitative model for credit rating transitions," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 111-130, January.
    7. Huong Dieu Dang, 2018. "National Culture and Corporate Rating Migrations," Risks, MDPI, vol. 6(4), pages 1-27, November.
    8. Frydman, Halina & Schuermann, Til, 2008. "Credit rating dynamics and Markov mixture models," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1062-1075, June.
    9. Camilla Ferretti & Giampaolo Gabbi & Piero Ganugi & Federica Sist & Pietro Vozzella, 2019. "Credit Risk Migration and Economic Cycles," Risks, MDPI, vol. 7(4), pages 1-18, October.
    10. Myriam Ben Ayed & Adel Karaa & Jean‐Luc Prigent, 2018. "Duration Models For Credit Rating Migration: Evidence From The Financial Crisis," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1870-1886, July.
    11. Stefanescu, Catalina & Tunaru, Radu & Turnbull, Stuart, 2009. "The credit rating process and estimation of transition probabilities: A Bayesian approach," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 216-234, March.
    12. Gloy, Brent A. & LaDue, Eddy L. & Gunderson, Michael A., 2004. "Credit Risk Migration Experienced By Agricultural Lenders," 2004 Annual meeting, August 1-4, Denver, CO 19944, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.
    14. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    15. Rebekka Topp & Robert Perl, 2010. "Through‐the‐Cycle Ratings Versus Point‐in‐Time Ratings and Implications of the Mapping Between Both Rating Types," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 19(1), pages 47-61, February.
    16. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    17. Xing, Haipeng & Sun, Ning & Chen, Ying, 2012. "Credit rating dynamics in the presence of unknown structural breaks," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 78-89.
    18. Michael Kalkbrener & Natalie Packham, 2024. "A Markov approach to credit rating migration conditional on economic states," Papers 2403.14868, arXiv.org.
    19. Jafry, Yusuf & Schuermann, Til, 2004. "Measurement, estimation and comparison of credit migration matrices," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2603-2639, November.
    20. Biase di Giuseppe & Guglielmo D'Amico & Jacques Janssen & Raimondo Manca, 2014. "A Duration Dependent Rating Migration Model: Real Data Application and Cost of Capital Estimation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(3), pages 233-245, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:32:y:2008:i:12:p:3807-3819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.