IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v173y2025ics0165188925000272.html
   My bibliography  Save this article

Conditional forecasts in large Bayesian VARs with multiple equality and inequality constraints

Author

Listed:
  • Chan, Joshua C.C.
  • Pettenuzzo, Davide
  • Poon, Aubrey
  • Zhu, Dan

Abstract

Conditional forecasts, i.e. projections of a set of variables of interest on the future paths of some other variables, are used routinely by empirical macroeconomists in a number of applied settings. In spite of this, the existing algorithms used to generate conditional forecasts tend to be very computationally intensive, especially when working with large Vector Autoregressions or when multiple linear equality and inequality constraints are imposed at once. We introduce a novel precision-based sampler that is fast, scales well, and yields conditional forecasts from linear equality and inequality constraints. We show in a simulation study that the proposed method produces forecasts that are identical to those from the existing algorithms but in a fraction of the time. We then illustrate the performance of our method in a large Bayesian Vector Autoregression. Within this setting, we first highlight how we can simultaneously impose a mix of linear equality and inequality constraints on the future trajectories of several key US macroeconomic indicators over a forecast horizon spanning multiple years. Next, we test the benefits of using inequality constraints in an out-of-sample exercise spanning the period between 1995Q1 and 2022Q3 and find that imposing these constraints on the future path of Real GDP leads to significant improvement in point and density forecasts of the large BVAR model.

Suggested Citation

  • Chan, Joshua C.C. & Pettenuzzo, Davide & Poon, Aubrey & Zhu, Dan, 2025. "Conditional forecasts in large Bayesian VARs with multiple equality and inequality constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:dyncon:v:173:y:2025:i:c:s0165188925000272
    DOI: 10.1016/j.jedc.2025.105061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188925000272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2025.105061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Precision-based method; Conditional forecast; Vector autoregression;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:173:y:2025:i:c:s0165188925000272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.