IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v172y2025ics0165188924001726.html
   My bibliography  Save this article

Least squares learning? Evidence from the laboratory

Author

Listed:
  • Bao, Te
  • Dai, Yun
  • Duffy, John

Abstract

We report on an experiment testing the empirical relevance of least squares (LS) learning, a common way of modelling how individuals learn a rational expectations equilibrium (REE). Subjects are endowed with the correct perceived law of motion (PLM) for a price level variable they are seeking to forecast, but do not know the true parameterization of that PLM. Instead, they must choose and can adjust the parameters of this PLM over 50 periods. Consistent with the E-stability of the REE in the model studied, 97.8% of subjects achieve weak convergence to the REE in terms of their price level predictions. However, the number of participants that can be characterized as least squares learners via the adjustments they make to the parameterization of the PLM over time depends on properties of the data generating process of the dependent and independent variables. Participants learn the REE faster, and behave more like least squares learners when there is greater variance in the independent variable of the model. We consider several alternatives to least squares learning and find evidence that many subjects employ a simple satisficing approach.

Suggested Citation

  • Bao, Te & Dai, Yun & Duffy, John, 2025. "Least squares learning? Evidence from the laboratory," Journal of Economic Dynamics and Control, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:dyncon:v:172:y:2025:i:c:s0165188924001726
    DOI: 10.1016/j.jedc.2024.104980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188924001726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2024.104980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Rational expectations equilibrium; Least squares learning; Experimental economics; Learning-to-forecast experiment; Behavioral macroeconomics;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:172:y:2025:i:c:s0165188924001726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.