IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp49-62.html
   My bibliography  Save this article

Fast and accurate computation for kernel estimators

Author

Listed:
  • Tang, Qingguo
  • Karunamuni, Rohana J.

Abstract

Standard kernel density and regression estimators are well-known to be computationally very slow when analyzing large data sets, and algorithms that achieve considerable computational savings are highly desirable. With this goal in mind, two fast and accurate computational methods are proposed in this paper for computation of univariate and multivariate local polynomial estimators defined on an equally spaced grid. Compared to direct implementation, the proposed algorithms lead to substantial computational savings. For the case in which the evaluation points are not the grid points, a fast algorithm is also proposed. It is shown that the proposed method is asymptotically superior to the general binning method. Numerical comparisons are also made to compare computational speeds and error bounds of the proposed methods with those of the linear binning and the direct implementation.

Suggested Citation

  • Tang, Qingguo & Karunamuni, Rohana J., 2016. "Fast and accurate computation for kernel estimators," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 49-62.
  • Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:49-62
    DOI: 10.1016/j.csda.2015.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001723
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonzalez-Manteiga, W. & Sanchez-Sellero, C. & Wand, M. P., 1996. "Accuracy of binned kernel functional approximations," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 1-16, June.
    2. B. W. Silverman, 1982. "Kernel Density Estimation Using the Fast Fourier Transform," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(1), pages 93-99, March.
    3. Hall, Peter & Wand, M. P., 1996. "On the Accuracy of Binned Kernel Density Estimators," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 165-184, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegland, Markus & McIntosh, Ian & Turlach, Berwin A., 1999. "A parallel solver for generalised additive models," Computational Statistics & Data Analysis, Elsevier, vol. 31(4), pages 377-396, October.
    2. Holmström, Lasse, 2000. "The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 264-309, February.
    3. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    4. Meintanis, S. & Ushakov, N. G., 2004. "Binned goodness-of-fit tests based on the empirical characteristic function," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 305-314, September.
    5. Slone, D.H., 2011. "Increasing accuracy of dispersal kernels in grid-based population models," Ecological Modelling, Elsevier, vol. 222(3), pages 573-579.
    6. Sain, Stephan R., 2002. "Multivariate locally adaptive density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 165-186, April.
    7. Gonzalez-Manteiga, W. & Sanchez-Sellero, C. & Wand, M. P., 1996. "Accuracy of binned kernel functional approximations," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 1-16, June.
    8. Jan G. de Gooijer & Ao Yuan, 2011. "Kernel-Smoothed Conditional Quantiles of Correlated Bivariate Discrete Data," Tinbergen Institute Discussion Papers 11-011/4, Tinbergen Institute.
    9. Gramacki, Artur & Gramacki, Jarosław, 2017. "FFT-based fast bandwidth selector for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 27-45.
    10. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    11. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    12. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    13. Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
    14. Goutis, Constantinos, 1996. "Nonparametric estimation of a mixing density via the kernel method," DES - Working Papers. Statistics and Econometrics. WS 10437, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Hardle, W. & Marron, J. S., 1995. "Fast and simple scatterplot smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 20(1), pages 1-17, July.
    16. Rizwan Muhammad & Yaolong Zhao & Fan Liu, 2019. "Spatiotemporal Analysis to Observe Gender Based Check-In Behavior by Using Social Media Big Data: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 11(10), pages 1-30, May.
    17. M. P. Wand & J. C. F. Yu, 2022. "Density estimation via Bayesian inference engines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 199-216, June.
    18. Kozek, A. S. & Yin, J., 2004. "On Gauss quadrature and partial cross validation," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 431-448, April.
    19. Scott, David W., 2004. "Multivariate Density Estimation and Visualization," Papers 2004,16, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    20. Semeyutin, Artur & O’Neill, Robert, 2019. "A brief survey on the choice of parameters for: “Kernel density estimation for time series data”," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:49-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.