IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v65y2013icp98-112.html
   My bibliography  Save this article

Robust minimum information loss estimation

Author

Listed:
  • Lind, John C.
  • Wiens, Douglas P.
  • Yohai, Victor J.

Abstract

Two robust estimators of a matrix-valued location parameter are introduced and discussed. Each is the average of the members of a subsample–typically of covariance or cross-spectrum matrices–with the subsample chosen to minimize a function of its average. In one case this function is the Kullback–Leibler discrimination information loss incurred when the subsample is summarized by its average; in the other it is the determinant, subject to a certain side condition. For each, the authors give an efficient computing algorithm, and show that the estimator has, asymptotically, the maximum possible breakdown point. The main motivation is the need for efficient and robust estimation of cross-spectrum matrices, and they present a case study in which the data points originate as multichannel electroencephalogram recordings but are then summarized by the corresponding sample cross-spectrum matrices.

Suggested Citation

  • Lind, John C. & Wiens, Douglas P. & Yohai, Victor J., 2013. "Robust minimum information loss estimation," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 98-112.
  • Handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:98-112
    DOI: 10.1016/j.csda.2012.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002526
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Todorov, Valentin, 1992. "Computing the minimum covariance determinant estimator (MCD) by simulated annealing," Computational Statistics & Data Analysis, Elsevier, vol. 14(4), pages 515-525, November.
    2. Mitra, Amit & Kundu, Debasis & Agrawal, Gunjan, 2006. "Frequency estimation of undamped exponential signals using genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1965-1985, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunkesser, Robin & Morell, Oliver, 2010. "An evolutionary algorithm for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3242-3248, December.
    2. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    3. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
    4. Schyns, M. & Haesbroeck, G. & Critchley, F., 2010. "RelaxMCD: Smooth optimisation for the Minimum Covariance Determinant estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 843-857, April.
    5. Nandi, Swagata & Kundu, Debasis & Srivastava, Rajesh Kumar, 2013. "Noise space decomposition method for two-dimensional sinusoidal model," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 147-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:98-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.