IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v60y2013icp111-122.html
   My bibliography  Save this article

An expected power approach for the assessment of composite endpoints and their components

Author

Listed:
  • Rauch, G.
  • Kieser, M.

Abstract

Composite endpoints are increasingly used in clinical trials, particularly in the field of cardiology. Thereby, the overall impact of the therapeutic intervention is captured by including several events of interest in a single variable. To demonstrate the significance of an overall clinical benefit, it is sufficient to assess the test problem for the composite. However, even if a statistically significant and clinically relevant superiority is shown for the composite endpoint, there is the need to evaluate the treatment effects for the components as, for example, a strong effect in one endpoint can mask an adverse effect in another. In most clinical applications, a descriptive analysis of the individual components is performed. However, the question remains what conclusion should be drawn from a trial where the composite shows a significant effect, but some component results which are not based on confirmatory evidence point in an adverse direction. Therefore, the first aim is to define an adequate multiple test problem of the composite and its most important components. Thereby, it might suffice to show superiority with respect to the composite and non-inferiority for the components to guarantee the clinical relevance of the result, as a slightly negative effect in one component might be acceptable as long as the total effect of all components is highly positive. To calculate the power for this multiple test problem, a number of strong assumptions on the effect sizes for the composite and its components as well as on the correlations between them are required. However, knowledge on these quantities is usually very limited and thus the choice of fixed parameter assumptions is based on a low level of evidence. The second aim therefore is to provide a more flexible power definition which takes the uncertainty about parameter assumptions into account. An expected power approach is proposed using prior distributions for the involved parameters. Thereby, the choice of the prior distribution reflects the level of evidence on the parameters. The expected power is evaluated for a range of scenarios and compared to the classical power for a fixed parameter setting. The new method is illustrated with a clinical trial example.

Suggested Citation

  • Rauch, G. & Kieser, M., 2013. "An expected power approach for the assessment of composite endpoints and their components," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 111-122.
  • Handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:111-122
    DOI: 10.1016/j.csda.2012.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003921
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Dunlei & Branscum, Adam J. & Stamey, James D., 2010. "A Bayesian approach to sample size determination for studies designed to evaluate continuous medical tests," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 298-307, February.
    2. Begum, Nelufa & King, Maxwell L., 2005. "Most mean powerful test of a composite null against a composite alternative," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1079-1104, June.
    3. Song, James X., 2009. "Sample size for simultaneous testing of rate differences in non-inferiority trials with multiple endpoints," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1201-1207, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Exact optimal inference in regression models under heteroskedasticity and non-normality of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2532-2553, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:111-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.