IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v58y2013icp82-97.html
   My bibliography  Save this article

A three-state recursive sequential Bayesian algorithm for biosurveillance

Author

Listed:
  • Zamba, K.D.
  • Tsiamyrtzis, Panagiotis
  • Hawkins, Douglas M.

Abstract

A serial signal detection algorithm is developed to monitor pre-diagnosis and medical diagnosis data pertaining to biosurveillance. The algorithm is three-state sequential, based on Bayesian thinking. It accounts for non-stationarity, irregularity and seasonality, and captures serial structural details of an epidemic curve. At stage n, a trichotomous variable governing the states of an epidemic is defined, and a prior distribution for time-indexed serial readings is set. The technicality consists of finding a posterior state probability based on the observed data history, using the posterior as a prior distribution for stage n+1 and sequentially monitoring surges in posterior state probabilities. A sensitivity analysis for validation is conducted and analytical formulas for the predictive distribution are supplied for error management purposes. The method is applied to syndromic surveillance data gathered in the United States (US) District of Columbia metropolitan area.

Suggested Citation

  • Zamba, K.D. & Tsiamyrtzis, Panagiotis & Hawkins, Douglas M., 2013. "A three-state recursive sequential Bayesian algorithm for biosurveillance," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 82-97.
  • Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:82-97
    DOI: 10.1016/j.csda.2011.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311001447
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nien Fan Zhang, 1997. "Detection capability of residual control chart for stationary process data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(4), pages 475-492.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaping Li & Haiyan Li & Zhen Chen & Ying Zhu, 2022. "An Improved Hidden Markov Model for Monitoring the Process with Autocorrelated Observations," Energies, MDPI, vol. 15(5), pages 1-13, February.
    2. Anna Malinovskaya & Philipp Otto, 2021. "Online network monitoring," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1337-1364, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:82-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.