IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v58y2013icp177-186.html
   My bibliography  Save this article

The computation of bivariate normal and t probabilities, with application to comparisons of three normal means

Author

Listed:
  • Kim, Jongphil

Abstract

A novel method for the computation of the bivariate normal and t probability is presented. With suitable transformations, the probability over sets can be easily computed using exact one-dimensional numerical integration. An important application includes computing the exact critical points for the comparisons of three normal means for either the known or unknown variance problem. The critical points by one-dimensional integration can be computed using elementary numerical methods and are more accurate than those by the approximation methods and two-dimensional integration methods. The comparisons of reliability measurements from three populations are presented as an example of a known variance case.

Suggested Citation

  • Kim, Jongphil, 2013. "The computation of bivariate normal and t probabilities, with application to comparisons of three normal means," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 177-186.
  • Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:177-186
    DOI: 10.1016/j.csda.2012.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003180
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hayter, A.J. & Kim, Jongphil & Liu, W., 2008. "Critical point computations for one-sided and two-sided pairwise comparisons of three treatment means," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 463-470, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuge Dong & Qingtong Xie & Shuguang Ding & Liangguo He & Hu Wang, 2022. "The evaluation of bivariate normal probabilities for failure of parallel systems," Statistical Papers, Springer, vol. 63(5), pages 1585-1614, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:177-186. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.