IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v58y2013icp139-146.html
   My bibliography  Save this article

Widely linear prediction for transfer function models based on the infinite past

Author

Listed:
  • Navarro-Moreno, Jesús
  • Moreno-Kaiser, Javier
  • Fernández-Alcalá, Rosa María
  • Ruiz-Molina, Juan Carlos

Abstract

The problem of widely linear (WL) prediction for both WL ARMA models and WL transfer function models on the basis of infinite past information is studied. A recursive algorithm to obtain a suboptimum predictor for WL ARMA systems is first given. Then this algorithm is used to develop another recursive algorithm which performs WL prediction for transfer function models. The suggested solutions become an alternative to the WL prediction based on a finite number of observations provided the size of the time series is sufficiently large.

Suggested Citation

  • Navarro-Moreno, Jesús & Moreno-Kaiser, Javier & Fernández-Alcalá, Rosa María & Ruiz-Molina, Juan Carlos, 2013. "Widely linear prediction for transfer function models based on the infinite past," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 139-146.
  • Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:139-146
    DOI: 10.1016/j.csda.2010.11.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947310004482
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2010.11.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis, 1994. "Estimating the parameters of complex-valued exponential signals," Computational Statistics & Data Analysis, Elsevier, vol. 18(5), pages 525-534, December.
    2. Ollila, Esa & Oja, Hannu & Koivunen, Visa, 2008. "Complex-valued ICA based on a pair of generalized covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3789-3805, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Azimmohseni & M. Khalafi & M. Kordkatuli, 2019. "Time series analysis of covariance based on linear transfer function models," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilmonen, Pauliina, 2013. "On asymptotic properties of the scatter matrix based estimates for complex valued independent component analysis," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1219-1226.
    2. Feng, Runhuan & Jing, Xiaochen, 2017. "Analytical valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 36-48.
    3. Nigmatullin, R.R. & Osokin, S.I. & Toboev, V.A., 2011. "NAFASS: Discrete spectroscopy of random signals," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 226-240.
    4. Nandi, Swagata & Kundu, Debasis & Srivastava, Rajesh Kumar, 2013. "Noise space decomposition method for two-dimensional sinusoidal model," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 147-161.
    5. Lietzén, Niko & Nordhausen, Klaus & Ilmonen, Pauliina, 2016. "Minimum distance index for complex valued ICA," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 100-106.
    6. Lee, Seonjoo & Shen, Haipeng & Truong, Young, 2021. "Sampling properties of color Independent Component Analysis," Journal of Multivariate Analysis, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:139-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.