IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i1p143-150.html
   My bibliography  Save this article

A quantile estimation for massive data with generalized Pareto distribution

Author

Listed:
  • Song, Jongwoo
  • Song, Seongjoo

Abstract

This paper proposes a new method of estimating extreme quantiles of heavy-tailed distributions for massive data. The method utilizes the Peak Over Threshold (POT) method with generalized Pareto distribution (GPD) that is commonly used to estimate extreme quantiles and the parameter estimation of GPD using the empirical distribution function (EDF) and nonlinear least squares (NLS). We first estimate the parameters of GPD using EDF and NLS and then, estimate multiple high quantiles for massive data based on observations over a certain threshold value using the conventional POT. The simulation results demonstrate that our parameter estimation method has a smaller Mean square error (MSE) than other common methods when the shape parameter of GPD is at least 0. The estimated quantiles also show the best performance in terms of root MSE (RMSE) and absolute relative bias (ARB) for heavy-tailed distributions.

Suggested Citation

  • Song, Jongwoo & Song, Seongjoo, 2012. "A quantile estimation for massive data with generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 143-150, January.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:143-150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002477
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castillo, Joan del & Serra, Isabel, 2015. "Likelihood inference for generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 116-128.
    2. Federico Palacios-González & Rosa M. García-Fernández, 2020. "A faster algorithm to estimate multiresolution densities," Computational Statistics, Springer, vol. 35(3), pages 1207-1230, September.
    3. Xu Zhao & Zhongxian Zhang & Weihu Cheng & Pengyue Zhang, 2019. "A New Parameter Estimator for the Generalized Pareto Distribution under the Peaks over Threshold Framework," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    4. Park, Myung Hyun & Kim, Joseph H.T., 2016. "Estimating extreme tail risk measures with generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 91-104.
    5. Hideki Nagatsuka & N. Balakrishnan, 2021. "Efficient likelihood-based inference for the generalized Pareto distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1153-1185, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:143-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.