IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i8p2463-2476.html
   My bibliography  Save this article

A segmentation-based algorithm for large-scale partially ordered monotonic regression

Author

Listed:
  • Sysoev, O.
  • Burdakov, O.
  • Grimvall, A.

Abstract

Monotonic regression (MR) is an efficient tool for estimating functions that are monotonic with respect to input variables. A fast and highly accurate approximate algorithm called the GPAV was recently developed for efficient solving large-scale multivariate MR problems. When such problems are too large, the GPAV becomes too demanding in terms of computational time and memory. An approach, that extends the application area of the GPAV to encompass much larger MR problems, is presented. It is based on segmentation of a large-scale MR problem into a set of moderate-scale MR problems, each solved by the GPAV. The major contribution is the development of a computationally efficient strategy that produces a monotonic response using the local solutions. A theoretically motivated trend-following technique is introduced to ensure higher accuracy of the solution. The presented results of extensive simulations on very large data sets demonstrate the high efficiency of the new algorithm.

Suggested Citation

  • Sysoev, O. & Burdakov, O. & Grimvall, A., 2011. "A segmentation-based algorithm for large-scale partially ordered monotonic regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2463-2476, August.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:8:p:2463-2476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00080-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Man-Suk & Shin, Dong Wan, 2011. "A unified Bayesian inference on treatment means with order constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 924-934, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Burdakov & Oleg Sysoev, 2017. "A Dual Active-Set Algorithm for Regularized Monotonic Regression," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 929-949, March.
    2. Alexander I. Jordan & Anja Mühlemann & Johanna F. Ziegel, 2022. "Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 489-514, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conde David & Salvador Bonifacio & Rueda Cristina & Fernández Miguel A., 2013. "Performance and estimation of the true error rate of classification rules built with additional information. An application to a cancer trial," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 583-602, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:8:p:2463-2476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.