IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i12p5143-5153.html
   My bibliography  Save this article

Bayesian multiple comparisons of simply ordered means using priors with a point mass

Author

Listed:
  • Nashimoto, Kane
  • Wright, F.T.

Abstract

Comparison of k treatment means under the simple-order assumption ([mu]1

Suggested Citation

  • Nashimoto, Kane & Wright, F.T., 2008. "Bayesian multiple comparisons of simply ordered means using priors with a point mass," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5143-5153, August.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5143-5153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00284-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harvey, Andrew C. & Trimbur, Thomas M. & Van Dijk, Herman K., 2007. "Trends and cycles in economic time series: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 618-649, October.
    2. Nashimoto, Kane & Wright, F.T., 2005. "A note on multiple comparison procedures for detecting differences in simply ordered means," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 393-401, July.
    3. Chris Hans & David B. Dunson, 2005. "Bayesian Inferences on Umbrella Orderings," Biometrics, The International Biometric Society, vol. 61(4), pages 1018-1026, December.
    4. Fruhwirth-Schnatter S., 2001. "Markov Chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 194-209, March.
    5. David B. Dunson & Amy H. Herring, 2003. "Bayesian Inferences in the Cox Model for Order-Restricted Hypotheses," Biometrics, The International Biometric Society, vol. 59(4), pages 916-923, December.
    6. Brian Neelon & David B. Dunson, 2004. "Bayesian Isotonic Regression and Trend Analysis," Biometrics, The International Biometric Society, vol. 60(2), pages 398-406, June.
    7. Nashimoto, Kane & Wright, F.T., 2005. "Multiple comparison procedures for detecting differences in simply ordered means," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 291-306, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Rychlik, 2019. "Sharp bounds on distribution functions and expectations of mixtures of ordered families of distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 166-195, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junfeng Shang & Joseph E. Cavanaugh & Farroll T. Wright, 2008. "A Bayesian Multiple Comparison Procedure for Order‐Restricted Mixed Models," International Statistical Review, International Statistical Institute, vol. 76(2), pages 268-284, August.
    2. Wright, F.T. & Nashimoto, Kane, 2011. "One-sided multiple comparisons for treatment means with a control mean," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1530-1539, April.
    3. Nashimoto, Kane & Wright, F.T., 2007. "Nonparametric multiple-comparison methods for simply ordered medians," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5068-5076, June.
    4. Chris Hans & David B. Dunson, 2005. "Bayesian Inferences on Umbrella Orderings," Biometrics, The International Biometric Society, vol. 61(4), pages 1018-1026, December.
    5. Oh, Man-Suk & Shin, Dong Wan, 2011. "A unified Bayesian inference on treatment means with order constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 924-934, January.
    6. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    7. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    8. Rodney W. Strachan & Herman K. Van Dijk, 2013. "Evidence On Features Of A Dsge Business Cycle Model From Bayesian Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(1), pages 385-402, February.
    9. Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
    10. Kosei Fukuda, 2010. "Three new empirical perspectives on the Hodrick–Prescott parameter," Empirical Economics, Springer, vol. 39(3), pages 713-731, December.
    11. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    12. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    13. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    14. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    15. Ioannis Ntzoufras & Claudia Tarantola, 2012. "Conjugate and Conditional Conjugate Bayesian Analysis of Discrete Graphical Models of Marginal Independence," Quaderni di Dipartimento 178, University of Pavia, Department of Economics and Quantitative Methods.
    16. Chris McDonald & Craig Thamotheram & Shaun P. Vahey & Elizabeth C. Wakerly, 2016. "Assessing the economic value of probabilistic forecasts in the presence of an inflation target," Reserve Bank of New Zealand Discussion Paper Series DP2016/10, Reserve Bank of New Zealand.
    17. Florian Huber & Gregor Kastner & Martin Feldkircher, 2019. "Should I stay or should I go? A latent threshold approach to large‐scale mixture innovation models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 621-640, August.
    18. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    19. Battistin, Erich & De Nadai, Michele & Sianesi, Barbara, 2014. "Misreported schooling, multiple measures and returns to educational qualifications," Journal of Econometrics, Elsevier, vol. 181(2), pages 136-150.
    20. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5143-5153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.