IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2007i2p1208-1222.html
   My bibliography  Save this article

Performance evaluation of iterative geometric fitting algorithms

Author

Listed:
  • Kanatani, Kenichi
  • Sugaya, Yasuyuki

Abstract

No abstract is available for this item.

Suggested Citation

  • Kanatani, Kenichi & Sugaya, Yasuyuki, 2007. "Performance evaluation of iterative geometric fitting algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1208-1222, October.
  • Handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:1208-1222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00215-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chernov, N. & Lesort, C., 2004. "Statistical efficiency of curve fitting algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 713-728, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanatani, Kenichi & Rangarajan, Prasanna, 2011. "Hyper least squares fitting of circles and ellipses," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2197-2208, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Chernov, 2011. "Fitting circles to scattered data: parameter estimates have no moments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 373-384, May.
    2. Al-Sharadqah, A. & Chernov, N., 2012. "A doubly optimal ellipse fit," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2771-2781.
    3. Al-Sharadqah, A. & Ho, K.C., 2018. "Constrained Cramér–Rao Lower Bound in Errors-In Variables (EIV) models: Revisited," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 118-126.
    4. Chernov, N. & Sapirstein, P.N., 2008. "Fitting circles to data with correlated noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5328-5337, August.
    5. Kanatani, Kenichi & Rangarajan, Prasanna, 2011. "Hyper least squares fitting of circles and ellipses," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2197-2208, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:1208-1222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.