IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2007i2p1132-1142.html
   My bibliography  Save this article

Local influence assessment in heteroscedastic measurement error models

Author

Listed:
  • de Castro, Mario
  • Galea-Rojas, Manuel
  • Bolfarine, Heleno

Abstract

No abstract is available for this item.

Suggested Citation

  • de Castro, Mario & Galea-Rojas, Manuel & Bolfarine, Heleno, 2007. "Local influence assessment in heteroscedastic measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1132-1142, October.
  • Handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:1132-1142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00213-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. G. Cadigan & P. J. Farrell, 2002. "Generalized local influence with applications to fish stock cohort analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 469-483, October.
    2. Alexander Kukush & Sabine Van Huffel, 2004. "Consistency of elementwise-weighted total least squares estimator in a multivariate errors-in-variables model AX=B," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(1), pages 75-97, February.
    3. Markovsky, Ivan & Luisa Rastello, Maria & Premoli, Amedeo & Kukush, Alexander & Van Huffel, Sabine, 2006. "The element-wise weighted total least-squares problem," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 181-209, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camila Zeller & Victor Lachos & Filidor Labra, 2014. "Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 55(3), pages 671-690, August.
    2. Giménez, Patricia & Galea, Manuel, 2013. "Influence measures on corrected score estimators in functional heteroscedastic measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 1-15.
    3. Patricia Giménez & María Patat, 2014. "Local influence for functional comparative calibration models with replicated data," Statistical Papers, Springer, vol. 55(2), pages 431-454, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arezoo Mokhtari & Behnam Tashayo & Kaveh Deilami, 2021. "Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM 2.5 Estimation," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    2. R.A.B. Assumpção & M.A. Uribe-Opazo & M. Galea, 2014. "Analysis of local influence in geostatistics using Student's t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2323-2341, November.
    3. Milan Hladík & Michal Černý & Jaromír Antoch, 2020. "EIV regression with bounded errors in data: total ‘least squares’ with Chebyshev norm," Statistical Papers, Springer, vol. 61(1), pages 279-301, February.
    4. Sabo, Kristian & Grahovac, Danijel & Scitovski, Rudolf, 2020. "Incremental method for multiple line detection problem — iterative reweighted approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 588-602.
    5. N. G. Cadigan, 2006. "Local Influence Diagnostics for Quasi-Likelihood and Lognormal Estimates of a Biological Reference Point from Some Fish Stock and Recruitment Models," Biometrics, The International Biometric Society, vol. 62(3), pages 713-720, September.
    6. Manuel Galea & Patricia Giménez, 2019. "Local influence diagnostics for the test of mean–variance efficiency and systematic risks in the capital asset pricing model," Statistical Papers, Springer, vol. 60(1), pages 293-312, February.
    7. D. T. Nava & F. De Bastiani & M. A. Uribe-Opazo & O. Nicolis & M. Galea, 2017. "Local Influence for Spatially Correlated Binomial Data: An Application to the Spodoptera frugiperda Infestation in Corn," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 540-561, December.
    8. Xibin Zhang & Maxwell L. King, 2002. "Influence Diagnostics in GARCH Processes," Monash Econometrics and Business Statistics Working Papers 19/02, Monash University, Department of Econometrics and Business Statistics.
    9. Kukush, A. & Markovsky, I. & Van Huffel, S., 2007. "Estimation in a linear multivariate measurement error model with a change point in the data," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1167-1182, October.
    10. Miguel Angel Uribe-Opazo & Joelmir Andr� Borssoi & Manuel Galea, 2012. "Influence diagnostics in Gaussian spatial linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 615-630, July.
    11. Markovsky, Ivan & Luisa Rastello, Maria & Premoli, Amedeo & Kukush, Alexander & Van Huffel, Sabine, 2006. "The element-wise weighted total least-squares problem," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 181-209, January.
    12. Venezuela, Maria Kelly & Sandoval, Mônica Carneiro & Botter, Denise Aparecida, 2011. "Local influence in estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1867-1883, April.
    13. Michal Pešta, 2016. "Unitarily invariant errors-in-variables estimation," Statistical Papers, Springer, vol. 57(4), pages 1041-1057, December.
    14. Aline B. Tsuyuguchi & Gilberto A. Paula & Michelli Barros, 2020. "Analysis of correlated Birnbaum–Saunders data based on estimating equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 661-681, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:1132-1142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.