IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v48y2005i3p467-487.html
   My bibliography  Save this article

Kernel weighted influence measures

Author

Listed:
  • Hens, Niel
  • Aerts, Marc
  • Molenberghs, Geert
  • Thijs, Herbert
  • Verbeke, Geert

Abstract

No abstract is available for this item.

Suggested Citation

  • Hens, Niel & Aerts, Marc & Molenberghs, Geert & Thijs, Herbert & Verbeke, Geert, 2005. "Kernel weighted influence measures," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 467-487, March.
  • Handle: RePEc:eee:csdana:v:48:y:2005:i:3:p:467-487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(04)00031-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    2. Molenberghs, Geert & Verbeke, Geert & Thijs, Herbert & Lesaffre, Emmanuel & Kenward, Michael G., 2001. "Influence analysis to assess sensitivity of the dropout process," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 93-113, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Eftekhari Mahabadi & M. Ganjali, 2012. "An index of local sensitivity to non-ignorability for parametric survival models with potential non-random missing covariate: an application to the SEER cancer registry data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2327-2348, July.
    2. Xiaoyan Shi & Hongtu Zhu & Joseph G. Ibrahim, 2009. "Local Influence for Generalized Linear Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1164-1174, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O'Hara Hines, R.J. & Hines, W.G.S., 2007. "Covariance miss-specification and the local influence approach in sensitivity analyses of longitudinal data with drop-outs," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5537-5546, August.
    2. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.
    3. Patrick E. B. FitzGerald, 2002. "Extended Generalized Estimating Equations for Binary Familial Data with Incomplete Families," Biometrics, The International Biometric Society, vol. 58(4), pages 718-726, December.
    4. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    5. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
    6. E. Michael Foster & Grace Y. Fang, 2004. "Alternative Methods for Handling Attrition," Evaluation Review, , vol. 28(5), pages 434-464, October.
    7. Mette Ejrnæs & Anders Holm, 2006. "Comparing Fixed Effects and Covariance Structure Estimators for Panel Data," Sociological Methods & Research, , vol. 35(1), pages 61-83, August.
    8. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    9. Rebecca E. Anthony & Amy L. Paine & Katherine H. Shelton, 2019. "Depression and Anxiety Symptoms of British Adoptive Parents: A Prospective Four-Wave Longitudinal Study," IJERPH, MDPI, vol. 16(24), pages 1-14, December.
    10. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    11. Molenberghs, Geert & Verbeke, Geert & Thijs, Herbert & Lesaffre, Emmanuel & Kenward, Michael G., 2001. "Influence analysis to assess sensitivity of the dropout process," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 93-113, July.
    12. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    13. Sebastian Domhof & Edgar Brunner & D. Wayne Osgood, 2002. "Rank Procedures for Repeated Measures with Missing Values," Sociological Methods & Research, , vol. 30(3), pages 367-393, February.
    14. Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    15. Amelia M. Haviland & Bobby L. Jones & Daniel S. Nagin, 2011. "Group-based Trajectory Modeling Extended to Account for Nonrandom Participant Attrition," Sociological Methods & Research, , vol. 40(2), pages 367-390, May.
    16. Shelley A. Blozis & Jeffrey R. Harring, 2017. "Understanding Individual-level Change Through the Basis Functions of a Latent Curve Model," Sociological Methods & Research, , vol. 46(4), pages 793-820, November.
    17. Xie, Hui, 2012. "Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1287-1300.
    18. Michael J. Daniels & Joseph W. Hogan, 2000. "Reparameterizing the Pattern Mixture Model for Sensitivity Analyses Under Informative Dropout," Biometrics, The International Biometric Society, vol. 56(4), pages 1241-1248, December.
    19. Lars Relund Nielsen & Erik Jørgensen & Søren Højsgaard, 2011. "Embedding a state space model into a Markov decision process," Annals of Operations Research, Springer, vol. 190(1), pages 289-309, October.
    20. Jennifer Chan & Wai Wan, 2011. "Bayesian approach to analysing longitudinal bivariate binary data with informative dropout," Computational Statistics, Springer, vol. 26(1), pages 121-144, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:48:y:2005:i:3:p:467-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.