IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v44y2003i1-2p193-210.html
   My bibliography  Save this article

Testing for outliers from a mixture distribution when some data are missing

Author

Listed:
  • Woodward, Wayne A.
  • Sain, Stephan R.

Abstract

No abstract is available for this item.

Suggested Citation

  • Woodward, Wayne A. & Sain, Stephan R., 2003. "Testing for outliers from a mixture distribution when some data are missing," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 193-210, October.
  • Handle: RePEc:eee:csdana:v:44:y:2003:i:1-2:p:193-210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00008-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt, Lynette & Jorgensen, Murray, 2003. "Mixture model clustering for mixed data with missing information," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 429-440, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangpeng Gao & Shahidur Rahman, 2006. "A New Direction of Fund Rating Based on the Finite Normal Mixture Model," Economic Growth Centre Working Paper Series 0603, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    2. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    3. Dolia, A.N. & Harris, C.J. & Shawe-Taylor, J.S. & Titterington, D.M., 2007. "Kernel ellipsoidal trimming," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 309-324, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Zio, Marco & Guarnera, Ugo & Luzi, Orietta, 2007. "Imputation through finite Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5305-5316, July.
    2. Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.
    3. Jing Xiao & Qiongqiong Xu & Chuanli Wu & Yuexia Gao & Tianqi Hua & Chenwu Xu, 2016. "Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.
    4. Adelchi Azzalini & Giovanna Menardi, 2016. "Density-based clustering with non-continuous data," Computational Statistics, Springer, vol. 31(2), pages 771-798, June.
    5. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    6. Reddy, Chandan K. & Rajaratnam, Bala, 2010. "Learning mixture models via component-wise parameter smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 732-749, March.
    7. Marco Di Zio & Ugo Guarnera, 2009. "Semiparametric predictive mean matching," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(2), pages 175-186, June.
    8. Bohning, Dankmar & Seidel, Wilfried, 2003. "Editorial: recent developments in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 349-357, January.
    9. Christophe Genolini & Bruno Falissard, 2010. "KmL: k-means for longitudinal data," Computational Statistics, Springer, vol. 25(2), pages 317-328, June.
    10. Wasito, Ito & Mirkin, Boris, 2006. "Nearest neighbours in least-squares data imputation algorithms with different missing patterns," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 926-949, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:44:y:2003:i:1-2:p:193-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.