IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v23y1997i3p355-372.html
   My bibliography  Save this article

Generalization of the geometric mean functional relationship

Author

Listed:
  • Draper, Norman R.
  • Yang, Yonghong (Fred)

Abstract

No abstract is available for this item.

Suggested Citation

  • Draper, Norman R. & Yang, Yonghong (Fred), 1997. "Generalization of the geometric mean functional relationship," Computational Statistics & Data Analysis, Elsevier, vol. 23(3), pages 355-372, January.
  • Handle: RePEc:eee:csdana:v:23:y:1997:i:3:p:355-372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(96)00037-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Laird-Smith & Kevin Meyer & Kanshukan Rajaratnam, 2016. "A study of total beta specification through symmetric regression: the case of the Johannesburg Stock Exchange," Environment Systems and Decisions, Springer, vol. 36(2), pages 114-125, June.
    2. Shaoji Xu, 2014. "A Property of Geometric Mean Regression," The American Statistician, Taylor & Francis Journals, vol. 68(4), pages 277-281, November.
    3. Colignatus, Thomas, 2017. "Comparing votes and seats with a diagonal (dis-) proportionality measure, using the slope-diagonal deviation (SDD) with cosine, sine and sign," MPRA Paper 80965, University Library of Munich, Germany, revised 24 Aug 2017.
    4. Mark H Holmes & Michael Caiola, 2018. "Invariance properties for the error function used for multilinear regression," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-25, December.
    5. Colignatus, Thomas, 2017. "Comparing votes and seats with a diagonal (dis-) proportionality measure, using the slope-diagonal deviation (SDD) with cosine, sine and sign," MPRA Paper 80833, University Library of Munich, Germany, revised 17 Aug 2017.
    6. Chris Tofallis, 2024. "Fitting an Equation to Data Impartially," Papers 2409.02573, arXiv.org.
    7. Stan Lipovetsky, 2023. "Statistical Modeling of Implicit Functional Relations," Stats, MDPI, vol. 6(3), pages 1-18, August.
    8. Chris Tofallis, 2023. "Fitting an Equation to Data Impartially," Mathematics, MDPI, vol. 11(18), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:23:y:1997:i:3:p:355-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.