IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v20y1995i6p669-687.html
   My bibliography  Save this article

Projection pursuit exploratory data analysis

Author

Listed:
  • Posse, Christian

Abstract

No abstract is available for this item.

Suggested Citation

  • Posse, Christian, 1995. "Projection pursuit exploratory data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 669-687, December.
  • Handle: RePEc:eee:csdana:v:20:y:1995:i:6:p:669-687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-9473(95)00002-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    2. Hall, Peter & Yao, Qiwei, 2005. "Approximating conditional distribution functions using dimension reduction," LSE Research Online Documents on Economics 16333, London School of Economics and Political Science, LSE Library.
    3. Ursula Laa & Dianne Cook, 2020. "Using tours to visually investigate properties of new projection pursuit indexes with application to problems in physics," Computational Statistics, Springer, vol. 35(3), pages 1171-1205, September.
    4. Chunming Zhang & Jimin Ye & Xiaomei Wang, 2023. "A Computational Perspective on Projection Pursuit in High Dimensions: Feasible or Infeasible Feature Extraction," International Statistical Review, International Statistical Institute, vol. 91(1), pages 140-161, April.
    5. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    6. Loperfido, Nicola, 2013. "Skewness and the linear discriminant function," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 93-99.
    7. Klinke, S. & Grassmann, J., 1998. "Projection pursuit regression and neural networks," SFB 373 Discussion Papers 1998,17, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:20:y:1995:i:6:p:669-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.