IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v207y2025ics0167947325000179.html
   My bibliography  Save this article

Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation

Author

Listed:
  • Pesonen, Henri
  • Corander, Jukka

Abstract

Approximate Bayesian computation (ABC) methods are standard tools for inferring parameters of complex models when the likelihood function is analytically intractable. A popular approach to improving the poor acceptance rate of the basic rejection sampling ABC algorithm is to use sequential Monte Carlo (ABC SMC) to produce a sequence of proposal distributions adapting towards the posterior, instead of generating values from the prior distribution of the model parameters. Proposal distribution for the subsequent iteration is typically obtained from a weighted set of samples, often called particles, of the current iteration of this sequence. Current methods for constructing these proposal distributions treat all the particles equivalently, regardless of the corresponding value generated by the sampler, which may lead to inefficiency when propagating the information across iterations of the algorithm. To improve sampler efficiency, a modified approach called stratified distance ABC SMC is introduced. The algorithm stratifies particles based on their distance between the corresponding synthetic and observed data, and then constructs distinct proposal distributions for all the strata. Taking into account the distribution of distances across the particle space leads to substantially improved acceptance rate of the rejection sampling. It is shown that further efficiency could be gained by using a newly proposed stopping rule for the sequential process based on the stratified posterior samples and these advances are demonstrated by several examples.

Suggested Citation

  • Pesonen, Henri & Corander, Jukka, 2025. "Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:csdana:v:207:y:2025:i:c:s0167947325000179
    DOI: 10.1016/j.csda.2025.108141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000179
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:207:y:2025:i:c:s0167947325000179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.