IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v207y2025ics0167947325000076.html
   My bibliography  Save this article

Functional time transformation model with applications to digital health

Author

Listed:
  • Ghosal, Rahul
  • Matabuena, Marcos
  • Ghosh, Sujit K.

Abstract

The advent of wearable and sensor technologies now leads to functional predictors which are intrinsically infinite dimensional. While the existing approaches for functional data and survival outcomes lean on the well-established Cox model, the proportional hazard (PH) assumption might not always be suitable in real-world applications. Motivated by physiological signals encountered in digital medicine, we develop a more general and flexible functional time-transformation model for estimating the conditional survival function with both functional and scalar covariates. A partially functional regression model is used to directly model the survival time on the covariates through an unknown monotone transformation and a known error distribution. We use Bernstein polynomials to model the monotone transformation function and the smooth functional coefficients. A sieve method of maximum likelihood is employed for estimation. Numerical simulations illustrate a satisfactory performance of the proposed method in estimation and inference. We demonstrate the application of the proposed model through two case studies involving wearable data i) Understanding the association between diurnal physical activity pattern and all-cause mortality based on accelerometer data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and ii) Modelling Time-to-Hypoglycemia events in a cohort of diabetic patients based on distributional representation of continuous glucose monitoring (CGM) data. The results provide important epidemiological insights into the direct association between survival times and the physiological signals and also exhibit superior predictive performance compared to traditional summary-based biomarkers in the CGM study.

Suggested Citation

  • Ghosal, Rahul & Matabuena, Marcos & Ghosh, Sujit K., 2025. "Functional time transformation model with applications to digital health," Computational Statistics & Data Analysis, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:csdana:v:207:y:2025:i:c:s0167947325000076
    DOI: 10.1016/j.csda.2025.108131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000076
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:207:y:2025:i:c:s0167947325000076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.