IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v206y2025ics0167947324002081.html
   My bibliography  Save this article

Component selection and variable selection for mixture regression models

Author

Listed:
  • Qi, Xuefei
  • Xu, Xingbai
  • Feng, Zhenghui
  • Peng, Heng

Abstract

Finite mixture regression models are commonly used to account for heterogeneity in populations and situations where the assumptions required for standard regression models may not hold. To expand the range of applicable distributions for components beyond the Gaussian distribution, other distributions, such as the exponential power distribution, the skew-normal distribution, and so on, are explored. To enable simultaneous model estimation, order selection, and variable selection, a penalized likelihood estimation approach that imposes penalties on both the mixing proportions and regression coefficients, which we call the double-penalized likelihood method is proposed in this paper. Four double-penalized likelihood functions and their performance are studied. The consistency of estimators, order selection, and variable selection are investigated. A modified expectation–maximization algorithm is proposed to implement the double-penalized likelihood method. Numerical simulations demonstrate the effectiveness of our proposed method and algorithm. Finally, the results of real data analysis are presented to illustrate the application of our approach. Overall, our study contributes to the development of mixture regression models and provides a useful tool for model and variable selection.

Suggested Citation

  • Qi, Xuefei & Xu, Xingbai & Feng, Zhenghui & Peng, Heng, 2025. "Component selection and variable selection for mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:csdana:v:206:y:2025:i:c:s0167947324002081
    DOI: 10.1016/j.csda.2024.108124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324002081
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:206:y:2025:i:c:s0167947324002081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.