Author
Listed:
- Chen, Bo
- Chen, Feifei
- Wang, Junxin
- Qiu, Tao
Abstract
Testing the departures from symmetry is a critical issue in statistics. Over the last two decades, substantial effort has been invested in developing tests for central symmetry in multivariate and high-dimensional contexts. Traditional tests, which rely on Euclidean distance, face significant challenges in high-dimensional data. These tests struggle to capture overall central symmetry and are often limited to verifying whether the distribution's center aligns with the coordinate origin, a problem exacerbated by the “curse of dimensionality.” Furthermore, they tend to be computationally intensive, often making them impractical for large datasets. To overcome these limitations, we propose a nonparametric test based on the random projected energy distance, extending the energy distance test through random projections. This method effectively reduces data dimensions by projecting high-dimensional data onto lower-dimensional spaces, with the randomness ensuring maximum preservation of information. Theoretically, as the number of random projections approaches infinity, the risk of power loss from inadequate directions is mitigated. Leveraging U-statistic theory, our test's asymptotic null distribution is standard normal, which holds true regardless of the data dimensionality relative to sample size, thus eliminating the need for re-sampling to determine critical values. For computational efficiency with large datasets, we adopt a divide-and-average strategy, partitioning the data into smaller blocks of size m. Within each block, the estimates of the random projected energy distance are normally distributed. By averaging these estimates across all blocks, we derive a test statistic that is asymptotically standard normal. This method significantly reduces computational complexity from quadratic to linear in sample size, enhancing the feasibility of our test for extensive data analysis. Through extensive numerical studies, we have demonstrated the robust empirical performance of our test in terms of size and power, affirming its practical utility in statistical applications for high-dimensional data.
Suggested Citation
Chen, Bo & Chen, Feifei & Wang, Junxin & Qiu, Tao, 2025.
"An efficient and distribution-free symmetry test for high-dimensional data based on energy statistics and random projections,"
Computational Statistics & Data Analysis, Elsevier, vol. 206(C).
Handle:
RePEc:eee:csdana:v:206:y:2025:i:c:s016794732400207x
DOI: 10.1016/j.csda.2024.108123
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:206:y:2025:i:c:s016794732400207x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.