IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v205y2025ics0167947324001956.html
   My bibliography  Save this article

A debiasing phylogenetic tree-assisted regression model for microbiome data

Author

Listed:
  • Li, Yanhui
  • Zhao, Luqing
  • Wang, Jinjuan

Abstract

Identifying associations between microbial taxa and sample features has always been a worthwhile issue in microbiome analysis and various regression-based methods have been proposed. These methods can roughly be divided into two types. One considers sparsity characteristic of the microbiome data in the analysis, and the other considers phylogenetic tree to employ evolutionary information. However, none of these methods apply both sparsity and phylogenetic tree thoroughly in the regression analysis with theoretical guarantees. To fill this gap, a phylogenetic tree-assisted regression model accompanied by a Lasso-type penalty is proposed to detect feature-related microbial compositions. Specifically, based on the rational assumption that the smaller the phylogenetic distance between two microbial species, the closer their coefficients in the regression model, the phylogenetic tree is accommodated into the regression model by constructing a Laplacian-type penalty in the loss function. Both linear regression model for continuous outcome and generalized linear regression model for categorical outcome are analyzed in this framework. Additionally, debiasing algorithms are proposed for the coefficient estimators to give more precise evaluation. Extensive numerical simulations and real data analyses demonstrate the higher efficiency of the proposed method.

Suggested Citation

  • Li, Yanhui & Zhao, Luqing & Wang, Jinjuan, 2025. "A debiasing phylogenetic tree-assisted regression model for microbiome data," Computational Statistics & Data Analysis, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:csdana:v:205:y:2025:i:c:s0167947324001956
    DOI: 10.1016/j.csda.2024.108111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001956
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:205:y:2025:i:c:s0167947324001956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.