IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v204y2025ics0167947324001907.html
   My bibliography  Save this article

Development of a new general class of bivariate distributions based on reversed hazard rate order

Author

Listed:
  • Yoo, Na Young
  • Lee, Hyunju
  • Cha, Ji Hwan

Abstract

Motivated by real data sets to be analyzed in this paper, we develop a new general class of bivariate distributions that can model the effect of the so-called ‘load-sharing configuration’ in a system with two components based on the reversed hazard rate. Under such load-sharing configuration, after the failure of one component, the surviving component has to shoulder extra load, which eventually results in its failure at an earlier time than what is expected under the case of independence. In the developed class of bivariate distributions, it is assumed that the residual lifetime of the remaining component is shortened according to the reversed hazard rate order. We derive the joint survival function, joint probability density function and the marginal distributions. We discuss a bivariate ageing property of the developed class of distributions. Some specific families of bivariate distributions which can be usefully applied in practice are obtained. These families of bivariate distributions are applied to some real data sets to illustrate their usefulness.

Suggested Citation

  • Yoo, Na Young & Lee, Hyunju & Cha, Ji Hwan, 2025. "Development of a new general class of bivariate distributions based on reversed hazard rate order," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001907
    DOI: 10.1016/j.csda.2024.108106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001907
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.