IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v204y2025ics0167947324001816.html
   My bibliography  Save this article

Multi-task optimization with Bayesian neural network surrogates for parameter estimation of a simulation model

Author

Listed:
  • Kim, Hyungjin
  • Park, Chuljin
  • Kim, Heeyoung

Abstract

We propose a novel framework for efficient parameter estimation in simulation models, formulated as an optimization problem that minimizes the discrepancy between physical system observations and simulation model outputs. Our framework, called multi-task optimization with Bayesian neural network surrogates (MOBS), is designed for scenarios that require the simultaneous estimation of multiple sets of parameters, each set corresponding to a distinct set of observations, while also enabling fast parameter estimation essential for real-time process monitoring and control. MOBS integrates a heuristic search algorithm, utilizing a single-layer Bayesian neural network surrogate model trained on an initial simulation dataset. This surrogate model is shared across multiple tasks to select and evaluate candidate parameter values, facilitating efficient multi-task optimization. We provide a closed-form parameter screening rule and demonstrate that the expected number of simulation runs converges to a user-specified threshold. Our framework was applied to a numerical example and a semiconductor manufacturing case study, significantly reducing computational costs while achieving accurate parameter estimation.

Suggested Citation

  • Kim, Hyungjin & Park, Chuljin & Kim, Heeyoung, 2025. "Multi-task optimization with Bayesian neural network surrogates for parameter estimation of a simulation model," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001816
    DOI: 10.1016/j.csda.2024.108097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001816
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.