IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v203y2025ics0167947324001737.html
   My bibliography  Save this article

Optimal sequential detection by sparsity likelihood

Author

Listed:
  • Huang, Jingyan
  • Chan, Hock Peng

Abstract

We propose here a sparsity likelihood stopping rule to detect change-points when there are multiple data streams. It is optimal in the sense of minimizing, asymptotically, the detection delay when the change-points is present in only a small fraction of the data streams. This optimality holds at all levels of change-point sparsity. A key contribution of this paper is that we show optimality when there is extreme sparsity. Extreme sparsity refers to the number of data streams with change-points increasing very slowly as the number of data streams goes to infinity. The theoretical results are backed by a numerical study that shows the sparsity likelihood stopping rule performing well at all levels of sparsity. Applications of the stopping rule on non-normal models are also illustrated here.

Suggested Citation

  • Huang, Jingyan & Chan, Hock Peng, 2025. "Optimal sequential detection by sparsity likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001737
    DOI: 10.1016/j.csda.2024.108089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001737
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.