Author
Listed:
- Zhang, Xueru
- Lin, Dennis K.J.
- Liu, Min-Qian
- Chen, Jianbin
Abstract
The order-of-addition (OofA) experiment involves arranging components in a specific order to optimize a certain objective, which is attracting a great deal of attention in many disciplines, especially in the areas of biochemistry, scheduling, and engineering. Recent studies have highlighted its significance, and notable works have aimed to address NP-hard OofA problems from a statistical perspective. However, solving OofA problems presents challenges due to their complex nature and the presence of uncertainty, such as scheduling problems with uncertain processing times. These uncertainties affect processing times, which are not known with certainty in advance. They introduce heteroscedasticity into OofA experiments, where different orders result in varying dispersions. To address these challenges, a unified framework is proposed to analyze scheduling problems without making specific assumptions about the distribution of these certainties. It encompasses model development and optimization, encapsulating existing homoscedastic studies (where different orders produce the same dispersion value) as a specific instance. For heteroscedastic cases, a dual response optimization within an uncertainty set is proposed, aiming to minimize the dispersion of response while keeping the location of response with a predefined target value. However, solving the proposed non-linear minimax optimization is rather challenging. An equivalent optimization formulation with low computational cost is proposed for solving such a challenging problem. Theoretical supports are established to ensure the tractability of the proposed method. Simulation studies are conducted to demonstrate the effectiveness of the proposed approach. With its solid theoretical support, ease of implementation, and ability to find an optimal order, the proposed approach offers a practical and competitive solution to solving general order-of-addition problems.
Suggested Citation
Zhang, Xueru & Lin, Dennis K.J. & Liu, Min-Qian & Chen, Jianbin, 2025.
"Analysis of order-of-addition experiments,"
Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
Handle:
RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001610
DOI: 10.1016/j.csda.2024.108077
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001610. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.