IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v203y2025ics0167947324001592.html
   My bibliography  Save this article

Testing sufficiency for transfer learning

Author

Listed:
  • Lin, Ziqian
  • Gao, Yuan
  • Wang, Feifei
  • Wang, Hansheng

Abstract

Modern statistical analysis often encounters high dimensional models but with limited sample sizes. This makes it difficult to estimate high-dimensional statistical models based on target data with limited sample size. Then how to borrow information from another large sized source data for more accurate target model estimation becomes an interesting problem. This leads to the useful idea of transfer learning. Various estimation methods in this regard have been developed recently. In this work, we study transfer learning from a different perspective. Specifically, we consider here the problem of testing for transfer learning sufficiency. We denote transfer learning sufficiency to be the null hypothesis. It refers to the situation that, with the help of the source data, the useful information contained in the feature vectors of the target data can be sufficiently extracted for predicting the interested target response. Therefore, the rejection of the null hypothesis implies that information useful for prediction remains in the feature vectors of the target data and thus calls for further exploration. To this end, we develop a novel testing procedure and a centralized and standardized test statistic, whose asymptotic null distribution is analytically derived. Simulation studies are presented to demonstrate the finite sample performance of the proposed method. A deep learning related real data example is presented for illustration purpose.

Suggested Citation

  • Lin, Ziqian & Gao, Yuan & Wang, Feifei & Wang, Hansheng, 2025. "Testing sufficiency for transfer learning," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001592
    DOI: 10.1016/j.csda.2024.108075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001592
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.