IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v203y2025ics0167947324001531.html
   My bibliography  Save this article

Fusion regression methods with repeated functional data

Author

Listed:
  • Moindjié, Issam-Ali
  • Preda, Cristian
  • Dabo-Niang, Sophie

Abstract

Linear regression and classification methods with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions related by some neighborhood structure (spatial, group, etc.). Two regression methods based on fusion penalties are proposed to consider the dependence induced by this structure. These methods aim to obtain parsimonious coefficient regression functions, by determining if close conditions are associated with common regression coefficient functions. The first method is a generalization to functional data of the variable fusion methodology based on the 1-nearest neighbor. The second one relies on the group fusion lasso penalty which assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. Numerical simulations and an application of electroencephalography data are presented.

Suggested Citation

  • Moindjié, Issam-Ali & Preda, Cristian & Dabo-Niang, Sophie, 2025. "Fusion regression methods with repeated functional data," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001531
    DOI: 10.1016/j.csda.2024.108069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001531
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.